The answer is <span>C. 49 m/s
The kinetic equation is:
v2 = v1 + a * t
v1 - initial velocity
v2 - final velocity
a - gravitational acceleration
t - time
We know:
v2 = ?
v1 = 0 (in free fall
a = 9.8 m/s
t = 5
</span>v2 = v1 + a * t
v2 = 0 + 9.8 * 5
v2 = 0 + 49
v2 = 49 m/s
Answer:
v = 10 m/s
Explanation:
Given that,
Distance covered by a sprinter, d = 100 m
Time taken by him to reach the finish line, t = 10 s
We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,
v = d/t

Hence, his average velocity is 10 m/s.
Answer:



Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as

We have the length of the pendulum is L=0.81 meters, then we have


(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

And

Solving for Y



The potential energy is


The mechanical energy is, then


(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

Equating to the mechanical energy of the system (M)

Solving for v


Answer:
A
Explanation:
The officer would have had permission regardless of anything else, kind of like letting someone into your house.