Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
Maybe molecules one electron
The temperature that must be to freeze the solution would be -21.1 ° C.
<h3>How to calculate the freezing temperature of this solution?</h3>
To calculate the freezing temperature we must take into account the following information.
- Solution with a salt concentration of 10% is frozen at -6°C
- Solution with a salt concentration of 20% is frozen at -16°C
- Solution with a higher concentration is frozen at -21.1°C
According to the above, it can be inferred that the puddle has a 50% concentration of salt because they had 12 kg of water and 6 kg of salt.
So the lowest freezing temperature would be 21.1°C because the puddle is 50% concentrated.
Note: This question is incomplete because there is some missing information. Here is the missing information:
- A 10% salt solution freezes at about 20°F (-6°C), and a 20% solution freezes at 2°F (-16°C).
- The lowest freezing point obtainable for salt solutions is −21.1 °C
Learn more about freezing in: brainly.com/question/14131507
Is this prier to a lab you've done?
Answer:
2 elements
Explanation:
Octane is composed of carbon and hydrogen atoms.