The slope and intercept form is the form of the straight line equation that includes the value of the slope of the line
- Neither
- ║
- Neither
- ⊥
- ║
- Neither
- Neither
- Neither
Reason:
The slope and intercept form is the form y = m·x + c
Where;
m = The slope
Two equations are parallel if their slopes are equal
Two equations are perpendicular if the relationship between their slopes, m₁, and m₂ are; ![m_1 = -\dfrac{1}{m_2}](https://tex.z-dn.net/?f=m_1%20%3D%20-%5Cdfrac%7B1%7D%7Bm_2%7D)
1. The given equations are in the slope and intercept form
![\ y = 3 \cdot x + 1](https://tex.z-dn.net/?f=%5C%20y%20%3D%203%20%5Ccdot%20x%20%2B%201)
The slope, m₁ = 3
![y = \dfrac{1}{3} \cdot x + 1](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Ccdot%20x%20%2B%201)
The slope, m₂ = ![\dfrac{1}{3}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B3%7D)
Therefore, the equations are <u>neither</u> parallel or perpendicular
2. y = 5·x - 3
10·x - 2·y = 7
The second equation can be rewritten in the slope and intercept form as follows;
![y = 5 \cdot x -\dfrac{7}{2}](https://tex.z-dn.net/?f=y%20%3D%205%20%5Ccdot%20x%20-%5Cdfrac%7B7%7D%7B2%7D)
Therefore, the two equations are <u>parallel</u>
3. The given equations are;
-2·x - 4·y = -8
-2·x + 4·y = -8
The given equations in slope and intercept form are;
![y = 2 -\dfrac{1}{2} \cdot x](https://tex.z-dn.net/?f=y%20%3D%202%20-%5Cdfrac%7B1%7D%7B2%7D%20%20%5Ccdot%20x)
Slope, m₁ = ![-\dfrac{1}{2}](https://tex.z-dn.net/?f=-%5Cdfrac%7B1%7D%7B2%7D)
![y = \dfrac{1}{2} \cdot x - 2](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%20%5Ccdot%20x%20-%202)
Slope, m₂ = ![\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7D)
The slopes
Therefore, m₁ ≠ m₂
![m_1 \neq -\dfrac{1}{m_2}](https://tex.z-dn.net/?f=m_1%20%5Cneq%20-%5Cdfrac%7B1%7D%7Bm_2%7D)
The lines are <u>Neither</u> parallel nor perpendicular
4. The given equations are;
2·y - x = 2
![y = \dfrac{1}{2} \cdot x +1](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ccdot%20%20%20x%20%2B1)
m₁ = ![\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7D)
y = -2·x + 4
m₂ = -2
Therefore;
![m_1 \neq -\dfrac{1}{m_2}](https://tex.z-dn.net/?f=m_1%20%5Cneq%20-%5Cdfrac%7B1%7D%7Bm_2%7D)
Therefore, the lines are <u>perpendicular</u>
5. The given equations are;
4·y = 3·x + 12
-3·x + 4·y = 2
Which gives;
First equation, ![y = \dfrac{3}{4} \cdot x + 3](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B3%7D%7B4%7D%20%5Ccdot%20x%20%2B%203)
Second equation, ![y = \dfrac{3}{4} \cdot x + \dfrac{1}{2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B3%7D%7B4%7D%20%5Ccdot%20x%20%2B%20%5Cdfrac%7B1%7D%7B2%7D)
Therefore, m₁ = m₂, the lines are <u>parallel</u>
6. The given equations are;
8·x - 4·y = 16
Which gives; y = 2·x - 4
5·y - 10 = 3, therefore, y = ![\dfrac{13}{5}](https://tex.z-dn.net/?f=%5Cdfrac%7B13%7D%7B5%7D)
Therefore, the two equations are <u>neither</u> parallel nor perpendicular
7. The equations are;
2·x + 6·y = -3
Which gives ![y = -\dfrac{1}{3} \cdot x - \dfrac{1}{2}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cdfrac%7B1%7D%7B3%7D%20%5Ccdot%20x%20-%20%5Cdfrac%7B1%7D%7B2%7D)
12·y = 4·x + 20
Which gives
![y = \dfrac{1}{3} \cdot x + \dfrac{5}{3}](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Ccdot%20x%20%2B%20%5Cdfrac%7B5%7D%7B3%7D)
m₁ ≠ m₂
![m_1 \neq -\dfrac{1}{m_2}](https://tex.z-dn.net/?f=m_1%20%5Cneq%20-%5Cdfrac%7B1%7D%7Bm_2%7D)
8. 2·x - 5·y = -3
Which gives; ![y = \dfrac{2}{5} \cdot x +\dfrac{3}{5}](https://tex.z-dn.net/?f=y%20%3D%20%5Cdfrac%7B2%7D%7B5%7D%20%5Ccdot%20x%20%2B%5Cdfrac%7B3%7D%7B5%7D)
5·x + 27 = 6
![x = -\dfrac{21}{5}](https://tex.z-dn.net/?f=x%20%3D%20-%5Cdfrac%7B21%7D%7B5%7D)
- Therefore, the slopes are not equal, or perpendicular, the correct option is <u>Neither</u>
Learn more here:
brainly.com/question/16732089