Answer:
annualy=$3689.62
semiannually=$3695.27
monthly=$3700.06
weekly=$3700.81
daily=$3701.00
Continuously=$3701.03
Step-by-step explanation:
Given:
P=3000
r=3%
t=7 years
Formula used:
Where,
A represents Accumulated amount
P represents (or) invested amount
r represents interest rate
t represents time in years
n represents accumulated or compounded number of times per year
Solution:
(i)annually
n=1 time per year
![A=3000[1+\frac{0.03}{1} ]^1^(^7^)\\ =3000(1.03)^7\\ =3689.621596\\](https://tex.z-dn.net/?f=A%3D3000%5B1%2B%5Cfrac%7B0.03%7D%7B1%7D%20%5D%5E1%5E%28%5E7%5E%29%5C%5C%20%20%3D3000%281.03%29%5E7%5C%5C%20%20%3D3689.621596%5C%5C)
On approximating the values,
A=$3689.62
(ii)semiannually
n=2 times per year
![A=3000[1+\frac{0.03}{2}^{2(4)} ]\\ =3000[1+0.815]^14\\ =3695.267192](https://tex.z-dn.net/?f=A%3D3000%5B1%2B%5Cfrac%7B0.03%7D%7B2%7D%5E%7B2%284%29%7D%20%5D%5C%5C%20%20%20%3D3000%5B1%2B0.815%5D%5E14%5C%5C%20%20%20%3D3695.267192)
On approximating the values,
A=$3695.27
(iii)monthly
n=12 times per year
![A=3000[1+\frac{0.03}{12}^{12(7)} \\ =3000[1+0.0025]^84\\ =3700.0644](https://tex.z-dn.net/?f=A%3D3000%5B1%2B%5Cfrac%7B0.03%7D%7B12%7D%5E%7B12%287%29%7D%20%5C%5C%20%20%20%3D3000%5B1%2B0.0025%5D%5E84%5C%5C%20%20%20%3D3700.0644)
On approximating,
A=$3700.06
(iv) weekly
n=52 times per year
![A=3000[1+\frac{0.03}{52}]^3^6 \\ =3000(1.23360336)\\ =3700.81003](https://tex.z-dn.net/?f=A%3D3000%5B1%2B%5Cfrac%7B0.03%7D%7B52%7D%5D%5E3%5E6%20%5C%5C%20%20%20%3D3000%281.23360336%29%5C%5C%20%20%20%3D3700.81003)
On approximating,
A=$3700.81
(v) daily
n=365 time per year
![A=3000[1+\frac{0.03}{365}]^{365(7)} \\ =3000[1.000082192]^{2555}\\ =3701.002234](https://tex.z-dn.net/?f=A%3D3000%5B1%2B%5Cfrac%7B0.03%7D%7B365%7D%5D%5E%7B365%287%29%7D%20%20%5C%5C%20%20%20%3D3000%5B1.000082192%5D%5E%7B2555%7D%5C%5C%20%20%20%3D3701.002234)
On approximating the values,
A=$3701.00
(vi) Continuously

On approximating the value,
A=$3701.03