The increase in speed leads to an increase in the amount of air resistance. Eventually, the force of air resistance becomes large enough to balances the force of gravity. At this instant in time, the net force is 0 Newton; the object will stop accelerating. The object is said to have reached a terminal velocity.
Answer:
1.635×10^-3m
Explanation:
Young modulus is the ratio of the tensile stress of a material to its tensile strain.
Young modulus = Tensile stress/tensile strain
Tensile stress = Force/Area
Given force = 130N
Area = Πr² = Π×(1.55×10^-3)²
Area = 4.87×10^-6m²
Tensile stress = 130/4.87×10^-6 = 8.39×10^7N/m²
Tensile strain = extension/original length
Tensile strain = e/3.9
Substituting in the young modulus formula given young modulus to be 2×10¹¹N/m²
2×10¹¹N/m² = 8.39×10^7/{e/3.9)}
2×10¹¹ = (8.39×10^7×3.9)/e
2×10¹¹e = 3.27×10^8
e = 3.27×10^8/2×10¹¹
e = 1.635×10^-3m
The stretch of the steel wire will be
1.635×10^-3m
Answer:
TEJ as this is a thing you wont get
More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.