Answer:
547 m
Explanation:
From law of motion
s = ut + ½at²
Where "t" is Time taken to reach Earth
s= distance= 182 m
a= vertical acceleration = 5.82 m / s 2
U= initial velocity in vertical position = 0
182= ½ × 5.82t²
t²=( 2× 182)/ 5.82
= 364/5.82
= 62.54
t= √62.54
t= 7.908s
horizontal distance travelled = speed x time
Horizontal speed= 72.6 m / s
horizontal distance travelled =72.6× 7.908
= 547 m
Hence, the survivor will it hit the waves at 547 m away
Answer:
stop, drop and roll.
Explanation:
This is because rolling on the ground can help put out the fire by depriving it of oxygen.
The text does not specify whether the resistance R of the wire must be kept the same or not: here I assume R must be kept the same.
The relationship between the resistance and the resistivity of a wire is

where

is the resistivity
A is the cross-sectional area
R is the resistance
L is the wire length
the cross-sectional area is given by

where r is the radius of the wire. Substituting in the previous equation ,we find

For the new wire, the length L is kept the same (L'=L) while the radius is doubled (r'=2r), so the new resistivity is

Therefore, the new resistivity must be 4 times the original one.
It is to conduct electricity in the magnet so it has an electric field.
Please BRAINLIEST!
Answer:
Momentum, p = 5 kg-m/s
Explanation:
The magnitude of the momentum of an object is the product of its mass m and speed v i.e.
p = m v
Mass, m = 3 kg
Velocity, v = 1.5 m/s
So, momentum of this object is given by :

p = 4.5 kg-m/s
or
p = 5 kg-m/s
So, the magnitude of momentum is 5 kg-m/s. Hence, this is the required solution.