Answer:
d. All of the above
Explanation:
All alternatives are correct due to the fact that when a company acts in a socially responsible manner, it achieves several internal and strategic benefits that help in the success of the business.
Currently, organizations are no longer just profitable entities but are also promoters of positive social transformations for the locality in which they operate and for the world.
Being socially responsible includes having benefit programs for stakeholders, which includes improving the perception with which the company is seen, generating a position that attracts shareholders, retains employees, generates greater job satisfaction, which increases productivity and retention of staff.
Generally, corporate governance programs include the review and culture of continuous improvement of organizational processes, which reduces costs, risks and waste, which contributes to the generation of competitive and profitable advantages for the organization.
When you say equipment meaning, it can be something that can help you boost your performance in doing something related to work. Thus in the given choices, building is not an example of equipment. Devices, machines and tools are the so-called equipment that is very helpful for the employee.
Answer:
Following are the solution to this question:
Explanation:
Assume that
will be a 12-month for the spot rate:
![\to 1.25 \% \times \frac{100}{2} \times 0.99 + \frac{(1.25\% \times \frac{100}{2}+100)}{(1+\frac{r_1}{2})^2}=98\\\\\to \frac{1.25}{100} \times \frac{100}{2} \times 0.99 + \frac{(\frac{1.25}{100} \times \frac{100}{2}+100)}{(1+\frac{r_1}{2})^2}=98\\\\\to \frac{1.25}{2} \times 0.99 + \frac{(\frac{1.25}{2} +100)}{(1+\frac{r_1}{2})^2}=98\\\\\to 0.61875 + \frac{( 0.625 +100)}{(\frac{2+r_1}{2})^2}=98\\\\\to 0.61875 + \frac{( 100.625)}{(\frac{2+r_1}{2})^2}=98\\\\\to 0.61875 + \frac{402.5}{(2+r_1)^2}=98\\\\](https://tex.z-dn.net/?f=%5Cto%201.25%20%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%281.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.25%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%28%5Cfrac%7B1.25%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.25%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%28%5Cfrac%7B1.25%7D%7B2%7D%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B%28%200.625%20%2B100%29%7D%7B%28%5Cfrac%7B2%2Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B%28%20100.625%29%7D%7B%28%5Cfrac%7B2%2Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%3D98%5C%5C%5C%5C)
![\to 0.61875 + \frac{402.5}{(2+r_1)^2}=98\\\\\to 0.61875 -98 = \frac{402.5}{(2+r_1)^2}\\\\\to -97.38125= \frac{402.5}{(2+r_1)^2}\\\\\to (2+r_1)^2= \frac{402.5}{ -97.38125}\\\\\to (2+r_1)^2= -4.13\\\\ \to r_1=3.304\%](https://tex.z-dn.net/?f=%5Cto%200.61875%20%2B%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20-98%20%3D%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%5C%5C%5C%5C%5Cto%20-97.38125%3D%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%5C%5C%5C%5C%5Cto%20%282%2Br_1%29%5E2%3D%20%5Cfrac%7B402.5%7D%7B%20-97.38125%7D%5C%5C%5C%5C%5Cto%20%282%2Br_1%29%5E2%3D%20-4.13%5C%5C%5C%5C%20%5Cto%20r_1%3D3.304%5C%25)
Assume that
will be a 18-month for the spot rate:
![\to 1.5\% \times \frac{100}{2} \times 0.99+1.5\% \times \frac{100}{2} \times \frac{1}{(1+ \frac{3.300\%}{2})^2}+\frac{(1.5\% \times \frac{100}{2}+100)}{(1+\frac{r_2}{2})^3}=97\\\\\to \frac{1.5}{100} \times \frac{100}{2} \times 0.99+\frac{1.5}{100} \times \frac{100}{2} \times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(\frac{1.5}{100} \times \frac{100}{2}+100)}{(1+\frac{r_2}{2})^3}=97\\\\](https://tex.z-dn.net/?f=%5Cto%201.5%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B1.5%5C%25%20%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B3.300%5C%25%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%281.5%5C%25%20%20%5Ctimes%20%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.5%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B%5Cfrac%7B1.5%7D%7B100%7D%20%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%28%5Cfrac%7B1.5%7D%7B100%7D%20%20%5Ctimes%20%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C)
![\to \frac{1.5}{2} \times 0.99+\frac{1.5}{2}\times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(\frac{1.5}{2} +100)}{(1+\frac{r_2}{2})^3}=97\\\\\to 0.7425+0.75 \times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(0.75 +100)}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4925 \times \frac{1}{(1+0.0165)^2}+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4925 \times \frac{1}{(1.033)}+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\](https://tex.z-dn.net/?f=%5Cto%20%5Cfrac%7B1.5%7D%7B2%7D%20%20%5Ctimes%200.99%2B%5Cfrac%7B1.5%7D%7B2%7D%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%28%5Cfrac%7B1.5%7D%7B2%7D%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%200.7425%2B0.75%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%280.75%20%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4925%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B0.0165%29%5E2%7D%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4925%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281.033%29%7D%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C)
![\to 1.4925 \times 0.96+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4328+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4328-97= \frac{(100.75 )}{(1+\frac{r_2}{2})^3}\\\\\to -95.5672= \frac{(100.75 )}{(1+\frac{r_2}{2})^3}\\\\\to (1+\frac{r_2}{2})^3= -1.054\\\\\to r_2=3.577\%](https://tex.z-dn.net/?f=%5Cto%201.4925%20%5Ctimes%200.96%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4328%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4328-97%3D%20%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%5C%5C%5C%5C%5Cto%20-95.5672%3D%20%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%5C%5C%5C%5C%5Cto%20%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%3D%20-1.054%5C%5C%5C%5C%5Cto%20r_2%3D3.577%5C%25)
Assume that
will be a 18-month for the spot rate:
![\to 1.25\% \times \frac{100}{2} \times 0.99+1.25\% \times \frac{100}{2} \times \frac{1}{(1+\frac{3.300\%}{2})^2}+1.25\%\times\frac{100}{2} \times \frac{1}{(1+\frac{3.577\%}{2})^3}+(1.25\% \times \frac{\frac{100}{2}+100}{(1+\frac{r_3}{2})^4})=96\\\\](https://tex.z-dn.net/?f=%5Cto%201.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B1.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%5Cfrac%7B3.300%5C%25%7D%7B2%7D%29%5E2%7D%2B1.25%5C%25%5Ctimes%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%5Cfrac%7B3.577%5C%25%7D%7B2%7D%29%5E3%7D%2B%281.25%5C%25%20%5Ctimes%20%5Cfrac%7B%5Cfrac%7B100%7D%7B2%7D%2B100%7D%7B%281%2B%5Cfrac%7Br_3%7D%7B2%7D%29%5E4%7D%29%3D96%5C%5C%5C%5C)
to solve this we get ![r_3=3.335\%](https://tex.z-dn.net/?f=r_3%3D3.335%5C%25)
Explanation:
Primary market for securities is one that provides access to buy new new issues of stocks and bonds of a company. A good example of primary market is an Initial Public Offering (IPO), organized by a company that wants to sell it's shares for the first time to investors.
While Secondary market, are places to sell securities to a secondary (second) buyer from the current security owner who bought from the primary market.
The primary market is dependent on the secondary market since it is the demand from the secondary market that determines the asset valuation of the primary market.