<span>9596.92898273, i put this in my calc. hope this helps!</span>
Answer:
Inequality
Step-by-step explanation:
There are an infinite number of quantities less than 6 (5, 4, 3, 2, 1, 0, -1, -2, -3...) so it is much easier to write an inequality
The weight of the new student is 27 kg.
Average weight
= total weight ÷total number of students
<h3>
1) Define variables</h3>
Let the total weight of the 35 students be y kg and the weight of the new student be x kg.
<h3>2) Find the total weight of the 35 students</h3>
<u>
</u>
y= 35(45)
y= 1575 kg
<h3>3) Write an expression for average weight of students after the addition of the new student</h3>
New total number of students
= 35 +1
= 36
Total weight
= total weight of 35 students +weight of new students
= y +x

<h3>4) Substitute the value of y</h3>

<h3>5) Solve for x</h3>
36(44.5)= 1575 +x
1602= x +1575
<em>Subtract 1575 from both sides:</em>
x= 1602 -1575
x= 27
Thus, the weight of the new student is 27 kg.
Answer:
D. 7/3
Explanation:
Y1 - Y2 / X1 - X2
9 - -5 / 6 - 0
9 + 5 / 6
14 / 6
7/3
Answer:
16.7% of GMAT scores are 647 or higher
Step-by-step explanation:
The Empirical Rule states that 68% of the values are within 1 standard deviation of the mean(34% above, 34% below). It also considers that 50% of the values are above the mean and 50% are below the mean.
In this problem, we have that the mean
is 547 and that the standard deviation
is 100.
a. What percentage of GMAT scores are 647 or higher?
647 is 1 standard deviation above the mean.
So, 50% of the values are below the mean. Those scores are lower than 647.
Also, there is the 34% of the values that are above the mean and are lower than 647.
So, there is a 50% + 34% = 84% percentage of GMAT scores that are 647 or lower.
The sum of the probabilities must be 100
So, the percentage of GMAT scores that are 647 or higher is 100% - 84% = 16%.