4 cos² x - 3 = 0
4 cos² x = 3
cos² x = 3/4
cos x = ±(√3)/2
Fixing the squared cosine doesn't discriminate among quadrants. There's one in every quadrant
cos x = ± cos(π/6)
Let's do plus first. In general, cos x = cos a has solutions x = ±a + 2πk integer k
cos x = cos(π/6)
x = ±π/6 + 2πk
Minus next.
cos x = -cos(π/6)
cos x = cos(π - π/6)
cos x = cos(5π/6)
x = ±5π/6 + 2πk
We'll write all our solutions as
x = { -5π/6, -π/6, π/6, 5π/6 } + 2πk integer k
Answer:
13.2
Step-by-step explanation:
Answer:
you plug in (y) with the top equation
Step-by-step explanation:
step 1: 2x+1/2x-1=-6
step 2: 2.5x-1=-6
step 3: 2.5x-1=-6
+1. +1
step 4: 2.5x= -5. Divide both sides by 2.5
-5/2.5 = -2
step 5: plug in your (x) to find (y)
y= 1/2(-2)-1
step 6: 1/2(-2) = -1
y=( -1)-1
y=-2
step 7: (x,y)= (-2,-2)
step 8: graph your coordinate
I hope that this helped you!
The general formula for the total surface area of a regular pyramid is T. S. A. =12pl+B where p represents the perimeter of the base, l the slant height and B the area of the base
To find the surface area of a regular triangular pyramid, we use the formula SA = A + (3/2)bh, where A = the area of the pyramid's base, b = the base of one of the faces, and h = height of one of the faces.
We can also label the length (l), width (w), and height (h) of the prism and use the formula, SA=2lw+2lh+2hw, to find the surface area.
To find surface area for a rectangular prism, use the formula SA = 2ab + 2bc + 2ac, where a is the width, b is the height, and c is the length. If you're trying to find the surface area of a triangular prism, use the formula SA = 2a + ph, where a is the area of the triangle, p is the perimeter, and h is the height
Hope that was helpful.Thank you!!!
Answer:
it is different by the numbers are changing so the answers are different and the 3 is one digit and 23 is two digits.
Step-by-step explanation: