1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
3 years ago
10

Please help you don't have to show work

Mathematics
1 answer:
crimeas [40]3 years ago
5 0

Answer:

1. a

2. 422

3. 156.06

Step-by-step explanation:

You might be interested in
Question 1
drek231 [11]

QUESTION 1

We want to expand (x-2)^6.


We apply the binomial theorem which is given by the  formula

(a+b)^n=^nC_0a^nb^0+^nC_1a^{n-1}b^1+^nC_2a^{n-2}b^2+...+^nC_na^{n-n}b^n.

By comparison,

a=x,b=-2,n=6.


We substitute all these values to obtain,


(x-2)^6=^6C_0x^6(-2)^0+^6C_1x^{6-1}(-2)^1+^6C_2x^{6-2}(-2)^2+^6C_3x^{6-3}(-2)^3+^6C_4x^{6-4}(-2)^4+^6C_5x^{6-5}(-2)^5+^6C_6x^{6-6}(-2)^6.


We now simplify to obtain,

(x-2)^6=^nC_0x^6(-2)^0+^6C_1x^{5}(-2)^1+^6C_2x^{4}(-2)^2+^6C_3x^{3}(-2)^3+^6C_4x^{2}(-2)^4+^6C_5x^{1}(-2)^5+^6C_6x^{0}(-2)^6.

This gives,

(x-2)^6=x^6-12x^{5}+60x^{4}-160x^{3}(-2)^3+240x^{2}-1925x+64.


Ans:C

QUESTION 2


We want to expand

(x+2y)^4.


We apply the binomial theorem to obtain,


(x+2y)^4=^4C_0x^4(2y)^0+^4C_1x^{4-1}(2y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(2y)^3+^4C_4x^{4-4}(2y)^4.


We simplify to get,


(x+2y)^4=x^4(2y)^0+4x^{3}(2y)^1+6x^{2}(2y)^2+4x^{1}(2y)^3+x^{0}(2y)^4.


We simplify further to obtain,


(x+2y)^4=x^4+8x^{3}y+24x^{2}y^2+32x^{1}y^3+16y^4


Ans:B


QUESTION 3

We want to find the number of terms in the binomial expansion,

(a+b)^{20}.


In the above expression, n=20.


The number of terms in a binomial expression is (n+1)=20+1=21.


Therefore there are 21 terms in the binomial expansion.


Ans:C


QUESTION 4


We want to expand

(x-y)^4.


We apply the binomial theorem to obtain,


(x-y)^4=^4C_0x^4(-y)^0+^4C_1x^{4-1}(-y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(-y)^3+^4C_4x^{4-4}(-y)^4.


We simplify to get,


(x+2y)^4=^x^4(-y)^0+4x^{3}(-y)^1+6x^{2}(-y)^2+4x^{1}(-y)^3+x^{0}(-y)^4.


We simplify further to obtain,


(x+2y)^4=x^4-4x^{3}y+6x^{2}y^2-4x^{1}y^3+y^4


Ans: C


QUESTION 5

We want to expand (5a+b)^5


We apply the binomial theorem to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{5-1}(b)^1+^5C_2(5a)^{5-2}(b)^2+^5C_3(5a)^{5-3}(b)^3+^5C_4(5a)^{5-4}(b)^4+^5C_5(5a)^{5-5}(b)^5.


We simplify to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{4}(b)^1+^5C_2(5a)^{3}(b)^2+^5C_3(5a)^{2}(b)^3+^5C_4(5a)^{1}(b)^4+^5C_5(5a)^{0}(b)^5.


This finally gives us,


(5a+b)^5=3125a^5+3125a^{4}b+1250a^{3}b^2+^250a^{2}(b)^3+25a(b)^4+b^5.


Ans:B

QUESTION 6

We want to expand (x+2y)^5.

We apply the binomial theorem to obtain,

(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{5-1}(2y)^1+^5C_2(x)^{5-2}(2y)^2+^5C_3(x)^{5-3}(2y)^3+^5C_4(x)^{5-4}(2y)^4+^5C_5(x)^{5-5}(2y)^5.


We simplify to get,


(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{4}(2y)^1+^5C_2(x)^{3}(2y)^2+^5C_3(x)^{2}(2y)^3+^5C_4(x)^{1}(2y)^4+^5C_5(x)^{0}(2y)^5.


This will give us,

(x+2y)^5=x^5+^10(x)^{4}y+40(x)^{3}y^2+80(x)^{2}y^3+80(x)y^4+32y^5.


Ans:A


QUESTION 7

We want to find the 6th term  of (a-y)^7.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=7,b=-y


We substitute to obtain,


T_{5+1}=^7C_5a^{7-5}(-y)^5.


T_{6}=-21a^{2}y^5.


Ans:D


QUESTION 8.

We want to find the 6th term of (2x-3y)^{11}


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=11,a=2x,b=-3y


We substitute to obtain,


T_{5+1}=^{11}C_5(2x)^{11-5}(-3y)^5.


T_{6}=-7,185,024x^{6}y^5.


Ans:D

QUESTION 9

We want to find the 6th term  of (x+y)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=8,a=x,b=y


We substitute to obtain,


T_{5+1}=^8C_5(x)^{8-5}(y)^5.


T_{6}=56a^{3}y^5.


Ans: A


We want to find the 7th term  of (x+4)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=6,n=8,a=x,b=4


We substitute to obtain,


T_{6+1}=^8C_5(x)^{8-6}(4)^6.


T_{7}=114688x^{2}.


Ans:A





4 0
3 years ago
I would greatly appreciate it if you helped me out
g100num [7]

Answer:no correlation

5 0
3 years ago
Read 2 more answers
I need help with a MathsWatch question!
KIM [24]
To find the area of a circle, you do π × diameter (in this case 10). They have told you to use 3.142 as π, so you do 3.142 × 10 = 31.42. Because it's a semi-circle, you need to halve 31.42 to get 16.21, which is the answer
6 0
3 years ago
Read 2 more answers
Solve the proportion
mario62 [17]

Answer:

\boxed{\sf x = 5}

Step-by-step explanation:

\sf Solve  \: for  \: x  \: over  \: the  \: real \:  numbers:  \\ \sf \implies  \frac{2}{x - 3}   =  \frac{5}{x}  \\  \\  \sf Take  \: the \:  reciprocal  \: of  \: both \:  sides:  \\ \sf \implies  \frac{x - 3}{2}  =  \frac{x}{5}  \\  \\  \sf Expand  \: out \:  terms \:  of \:  the \:  left  \: hand \:  side:  \\  \\ \sf \implies \frac{x}{2}  -  \frac{3}{2}  =  \frac{x}{5}  \\  \\  \sf Subtract \:  \frac{x}{5}   -  \frac{3}{2}  \: from  \: both  \: sides: \\  \sf \implies \frac{x}{2}  -  \frac{3}{2} - ( \frac{x}{5}   -  \frac{3}{2} ) =  \frac{x}{5} - ( \frac{x}{5}  -  \frac{3}{2} ) \\  \\  \sf \implies \frac{x}{2}  -  \frac{3}{2} -  \frac{x}{5}    +   \frac{3}{2} =  \frac{x}{5} -  \frac{x}{5}  +  \frac{3}{2}  \\  \\  \sf \frac{x}{5}  -  \frac{x}{5}  = 0 :  \\  \sf \implies \frac{x}{2}  -  \frac{x}{5}  -  \frac{3}{2}  +  \frac{3}{2}  =  \frac{3}{2}  \\  \\  \sf  \frac{3}{2}   -   \frac{3}{2}   = 0:  \\  \sf \implies \frac{x}{2}  -  \frac{x}{5}  =  \frac{3}{2}   \\  \\ \sf \frac{x}{2}  -  \frac{x}{5} =  \frac{5x - 2x}{10}  =  \frac{3x}{10} :  \\   \sf \implies \frac{3x}{10}  =  \frac{3}{2}   \\  \\ \sf Multiply \:  both  \: sides \:  by \:  \frac{10}{3}  : \\   \sf \implies \frac{3x}{10}  \times  \frac{10}{3}  =  \frac{3}{2 }  \times  \frac{10}{3}   \\  \\ \sf \frac{3x}{10}  \times  \frac{10}{3}  =   \cancel{\frac{3}{10} } \times( x) \times  \cancel{ \frac{10}{3} } = x :  \\  \sf \implies x =  \frac{3}{2}  \times  \frac{10}{3} \\  \\   \sf  \frac{3}{2}  \times  \frac{10}{3}  = \cancel{ \frac{3}{2} }  \times \cancel{ \frac{3}{2} }  \times 5 :   \\ \sf \implies x = 5

8 0
3 years ago
Suppose you obtain a $3,000 T-note with a 3% annual rate and maturity in 5 years. How much interest will you earn?
Gennadij [26K]
Hi there

483.55$ in interest

Hope I helped <3
7 0
3 years ago
Other questions:
  • Suppose you have 7 dark chocolates and 9 light chocolates in a box.
    7·1 answer
  • Which two sets of angles are corresponding angles ?
    12·1 answer
  • Identify the reflection of the figure with vertices
    5·1 answer
  • A walkway forms one diagonal of a square playground. The walkway is 24 m long. How long is a side of the​ playground?
    14·1 answer
  • Find the missing value in each proportion k/18 =20/76
    12·1 answer
  • Suppose that a new fuel-efficient European car travels an average of 26 kilometers on 1 liter of gas. If gas costs 2.25 euros pe
    9·2 answers
  • Please right answers only xoxo
    8·2 answers
  • can anyone explain how to do an equation like this and what the answer would be? i’m so confused haha. thank you! answer asap!!
    12·1 answer
  • The area for any square is given by the function ()=2, where x is the length of a side of the square and y is the area of the sq
    11·1 answer
  • BRAINLIEST TO CORRECT please answer both
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!