The cost of a senior citizen ticket is $15 and the cost of a student ticket is $12.
How did I get this?
We know that 6 citizen tickets and 7 student stickers sold for $174 the first day. And 10 citizen tickets and 14 student tickets sold for $318 the second day.
1. create two equations out of this: C= citizen cost per ticket and S = student cost per ticket.
6C + 7S = $174
10C + 14S = $318
2. Use process of elimination. Multiply the first equation by 2 because we want two variables to cancel out.
-12C - 14S = -$348
10C + 14S = $318
Combine like terms.
-2C = $30
Divide by -2 on both sides. The left side cancels out.
C = $30/-2
C = -$15 (In this case the negative doesn't matter)
C = $15 (cost of senior citizen ticket)
Plug the value of C into any of the two equations so we can get the value of S.
6($15) + 7S = $174
Distribute the 6 into the parenthesis.
$90 + 7S = $174
Subtract both sides by $90 and the left side will cancel out.
7S = $84
Divide both sides by 7.
S = $12
Student ticket: $12
Senior citizen ticket: $15
Answer:
(x + 1)² = (2x)²
(1 + 1)² = (2(1))²
2² = 2²
4 = 4
(-1 + 1)² = (2(-13))²
(-12)² = (-26)²
Not true
x = -13 satisfies neither
Answer:
X = 2
Step-by-step explanation:
Step-by-step explanation:
the linear inequality is how to measure value of a line through quality and quantity.
3y = 5x + 30
y + 5x = 50 .......(1)
3y - 5x = 30 .....(2) - rearranging the first equation.
Add (1) and (2):-
4y = 80
y = 20
Now plug y = 20 into equation (1):-
20 + 5x = 50
5x = 30
x = 6
The 2 numbers are 6 and 20.