Answer:
![x_{1} =-5\\and \\x_{2} =-3](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D-5%5C%5Cand%20%5C%5Cx_%7B2%7D%20%3D-3)
Step-by-step explanation:
Solve by using factoring ------->
rewrite the expresion
x^2+8x+15=0
x^2+5x+3x+15=0
factor out x from the expression
x^2+5x+3x+15=0
xx(x+5)+3x+15=0
xx(x+5)+3(x+5)=0
factor out x+5 from expression
(x+5)x(x+3)=0
when the product of factors equals 0, at least one factor is 0
x+5=0
x+3=0
solve the equation for x
x = -5
x = -3
the equation has 2 solutions
![x_{1} =-5, x_{2} =-3](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D-5%2C%20x_%7B2%7D%20%3D-3)
<h3>Step-by-step Explanation:</h3>
Quadratic formula
![x=\frac{-8+\sqrt{8^{2} -4x1x15} }{2x1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-8%2B%5Csqrt%7B8%5E%7B2%7D%20-4x1x15%7D%20%7D%7B2x1%7D)
any expression multiplied by 1 remains the same
![x=\frac{-8+\sqrt{8^{2}-4x15 } }{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-8%2B%5Csqrt%7B8%5E%7B2%7D-4x15%20%7D%20%7D%7B2%7D)
evaluate the power
![x=\frac{-8+\sqrt{64-4x15} }{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-8%2B%5Csqrt%7B64-4x15%7D%20%7D%7B2%7D)
multiply the numbers
![x=\frac{-8+\sqrt{64-60} }{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-8%2B%5Csqrt%7B64-60%7D%20%7D%7B2%7D)
subtract the numbers
![x=\frac{8+\sqrt{4} }{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B8%2B%5Csqrt%7B4%7D%20%7D%7B2%7D)
calculate the square root
![x=\frac{-8+2}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-8%2B2%7D%7B2%7D)
write solution with a + sign and a - sign
![x=\frac{-8+2}{2} \\x=\frac{-8-2}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-8%2B2%7D%7B2%7D%20%5C%5Cx%3D%5Cfrac%7B-8-2%7D%7B2%7D)
calculate the value
![x=-3\\x=-5](https://tex.z-dn.net/?f=x%3D-3%5C%5Cx%3D-5)
the equation has 2 solutions
![x=-3\\x=-5 \\and\\x_{1} =-5\\x_{2} =-3](https://tex.z-dn.net/?f=x%3D-3%5C%5Cx%3D-5%20%5C%5Cand%5C%5Cx_%7B1%7D%20%3D-5%5C%5Cx_%7B2%7D%20%3D-3)