Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
Answer:
<h2>D</h2>
Step by step explanation:
<h2>Just took the quiz.</h2>
In this case we are dealing with the pythagorean theorm involving right angled triangles. This theorm states that a^2 + b^2 = c^2 which means the square of the hypotenuse (side c, opposite the right angle) is equal to the square of the remaining two sides.
In this case we will say that a = 3963 miles which is the radius of the earth. c is equal to the radius of the earth plus the additional altitude of the space station which is 250 miles; therefore, c = 4213 miles. We must now solve for the value b which is equal to how far an astronaut can see to the horizon.
(3963)^2 + b^2 = (4213)^2
b^2 = 2,044,000
b = 1430 miles.
The astronaut can see 1430 miles to the horizon.
Answer:

Step-by-step explanation:
Solve for the value of
:

-Take
and subtract it from
:


-Subtract both sides and convert
to a fraction:


Since both
and
have the same denominator, then you would subtract the numerator:


-Multiply both sides by
, which is the reciprocal of
:



-Divide
by
:


So, therefore, the value of
is
.
Answer:
72
Step-by-step explanation:
i thinkkkk im on this unit too in geometry