Answer:

Explanation:
We are asked to find the specific heat capacity of a sample of lead. The formula for calculating the specific heat capacity is:

The heat absorbed (Q) is 237 Joules. The mass of the lead sample (m) is 22.7 grams. The change in temperature (ΔT) is the difference between the final temperature and the initial temperature. The temperature increases <em>from</em> 29.8 °C <em>to </em>95.6 °C.
- ΔT = final temperature -inital temperature
- ΔT= 95.6 °C - 29.8 °C = 65.8 °C
Now we know all three variables and can substitute them into the formula.
- Q= 237 J
- m= 22.7 g
- ΔT = 65.8 °C

Solve the denominator.
- 22.7 g * 65.8 °C = 1493.66 g °C

Divide.

The original values of heat, temperature, and mass all have 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place tells us to round the 8 up to a 9.

The specific heat capacity of lead is approximately <u>0.159 Joules per gram degree Celsius.</u>
Answer:
1031.85 grams
Explanation:
Further explanation
https://socratic.org/questions/how-many-grams-are-there-in-4-50-moles-of-ba-no-2-2#:~:text=Therefore%2C%20there%20are%201031.85%20grams,(NO2)2%20.
The % V/V concentration of a 180-mL disinfectant solution containing 85 mL of isopropyl alcohol is 47 % V/V.
<h3>What is the % V/V concentration?</h3>
It refers to the milliliters of solute for every 100 milliliters of solution.
We have 180 mL of a disinfectant solution that contains 85 mL of isopropyl alcohol (solute).
The % V/V concentration of this solution is:
% V/V = (mL solute/mL solution) × 100% =
% V/V = (85 mL/180 mL) × 100% = 47% V/V
Learn more about % V/V here: brainly.com/question/17055828
#SPJ1
Add up all the numbers. So for 15 it would be 174.8.