Total of 127.013 C of charge is passed
Given
weight of Ag solution before current has passed = 1.7854 g
weight of Ag solution after current has passed = 1.8016 g
Molecular mass of Ag = 107.86 g
Faraday's Constant = 96485
First of all we have to apply Faraday's First Law of Electrolysis i.e
m = ZQ
where
Z is propotionality constant (g/C)
Q is charge (C)
Hence,
Z = Atomic mass of substance/ Faraday's Constant
= 
= 0.0011178 g/C
Now ,
change in mass before and after the passing of current (Δm)
Δm = 1.8016g-1.7854g
= 0.0162g
Now amount of coulombs passed = 
amount of coulombs passed = 127.03524 C
Thus from the above conclusion we can say that amount of coulombs have passed is 127.03524 C
Learn more about Electrolysis here: brainly.com/question/16929894
#SPJ4
Number of moles = 5.7 moles of oxygen.
<u>Explanation:</u>
We have to convert number of molecules into number of moles by dividing the number of molecules by Avogadro's number.
Here number of molecules of oxygen given is 34.1 × 10²³ molecules.
Now we have to divide the number of molecules by Avogadro's number as,
Number of moles = 
= 
= 5.7 moles
So here molecules is converted into moles.
did it hurt when you fell from heaven ;)
Photosynthesis produces glucose and oxygen.... Respiration on the other hand would produce the other options.
Answer:
4198.97404999
Explanation:
In chemistry, the formula weight is a quantity computed by multiplying the atomic weight (in atomic mass units) of each element in a chemical formula by the number of atoms of that element present in the formula, then adding all of these products together.
Using the chemical formula of the compound and the periodic table of elements, we can add up the atomic weights and calculate molecular weight of the substance.
If the formula used in calculating molar mass is the molecular formula, the formula weight computed is the molecular weight. The percentage by weight of any atom or group of atoms in a compound can be computed by dividing the total weight of the atom (or group of atoms) in the formula by the formula weight and multiplying by 100.