Answer:
a) The probability of selling less than 100 gallons (x≤1) is P=0.16.
b) The mean number of gallons is M=80 gallons.
Step-by-step explanation:
The probability of selling x, in hundred of gallons, on any day during the summer is y(x)=0.32x, in a range for x from [0;2.5].
The probability of selling less than 100 gallons (x≤1) is then:

The mean number of gallons can be calculated as:

Let X describes the sales
350.25+0.12x=800.5
Now solve for x
0.12x=800.5-350.25
0.12x=450.25
X=450.25÷0.12
X=3,752.08
the sales necessary for the salesperson to earn at least $800.50 in one week is 3,752.08
In this equation, you have to treat the number in the bracket first on the basis of BODMAS
15 - [-3]- 4
Note that when two minuses come together the product is a plus sign.
15 +3 - 4
You have to add before you subract
18 - 4 =14
Therefore, 15- [-3] - 4 = 14.
Answer:
B
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given that the random variable X is normally distributed, with
mean = 50 and standard deviation = 7.
Then we have z= 
Using this and normal table we find that
a) 
b) When z=0.02
we get

c) 90th percentile z value =1.645
90th percentile of X 