Exactly 989527/1048576, or approximately 94.37%
Since each trait is carried on a different chromosome, the two traits are independent of each other. Since both parents are heterozygous for the trait, each parent can contribute 1 of a possible 4 combinations of the alleles. So there are 16 possible offspring. I'll use "a", "A", "b", "B" to represent each allele and the possible children are aabb, aabB, aaBb, aaBB, aAbb, aAbB, aABb, aABB, Aabb, AabB, AaBb, AaBB, AAbb, AAbB, AABb, and AABB
Of the above 16 possibilities, there are 7 that are homozygous in an undesired traint and 9 that don't exhibit the undesired trait. So let's first calculate the probability of "what are the chances that all 5 children not exhibiting an undesired trait?" and then subtract that result from 1. So
1-(9/16)^5 = 1 - 59049/1048576 = 989527/1048576 which is approximately 0.943686485 = 94.3686485%
So the answer is exactly 989527/1048576, or approximately 94.37%
Answer: 3. gravitropism
The movement of plants in response to stimuli is called as tropism. Plants respond to different stimuli like light (phototropism), water present in the soil (hydrotropism), gravity (gravitropism) and touch (thigmotropism).
Gravitropism refers the growth and movement of plant parts with respect to the force of gravity exerted by earth. The roots shows positive gravitational tropism because they are growing towards earth gravity. The shoots or stems shows negative gravitational tropism because they are moving or growing against the gravity.
I we rather say that Is not possible I go for false
Answer:
I think its true
Explanation:
The chromosomal sex of the embryo is established at fertilization. However, 6 weeks elapse in humans before the first signs of sex differentiation are noticed. Sex differentiation involves a series of events whereby the sexually indifferent gonads and genitalia progressively acquire male or female characteristics.