Bill and Joe have 60 dollars between them. Bill has half as much as Joe.
so Bill = B and Joe = J
20 (B) + 40 (J) = 60
Bill has half the amount of Joe, and so 40/2 = 20
subtract 60 from 20 (the answer for Bill) and you get 40, (the answer for Joe)
hope this helps
Answer:
7/15x - 9
Step-by-step explanation:
(4/5x - 5) - (1/3x + 4)
remove the parentheses
4/5x - 5 - 1/3x - 4
simplify each variable
4/5x - 9 - 1/3x
7/15x - 9
4 1/2 + 3 3/4 = 4 2/4 + 3 3/4 = 7 5/4 = 8 1/4...what he needs for A and B
He used 12 inches of cable...
12 - 8 1/4 = 11 4/4 - 8 1/4 = 3 3/4....length left after A and B are made
he doesn't have enough to make the last one...
5 1/8 - 3 3/4 = 41/8 - 15/4 = 41/8 - 30/8 = 11/8 = 1 3/8....he is short by 1 3/8 inches
a. Parameterize
by

with
.
b/c. The line integral of
over
is




d. Notice that we can write the line integral as

By Green's theorem, the line integral is equivalent to

where
is the triangle bounded by
, and this integral is simply twice the area of
.
is a right triangle with legs 2 and 5, so its area is 5 and the integral's value is 10.
Answer: 0.238853503185
(I obviously used a calculator.)
If you rounded this answer, it would be 0.24. Hope this helps!