1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
14

1. Using property, simplify:

Mathematics
1 answer:
lorasvet [3.4K]3 years ago
5 0

Answer:

You can only solve this using BODMAS

Step-by-step explanation:

You solve them in this order

B=Brackets

O=Orders

D=Division

M=Multiplication

A=Addition

S=Subtraction

You might be interested in
Help please ::)))))........................
Zarrin [17]

Answer:

4:9

Step-by-step explanation:

  1. Circles: 8
  2. Total shapes: squares + circles
  3. Total shapes: 10 + 8
  4. Total shapes: 18
  5. Circles : Total shapes = 8:18
  6. 8:18 = 4:9

I hope this helps!

3 0
3 years ago
Read 2 more answers
(2pm^-1q^0)^-4 • 2m ^-1 p^3 / 2pq^2
Montano1993 [528]

Answer:

\dfrac{m^3}{16p^2q^2}

Step-by-step explanation:

Given:

(2pm^{-1}q^0)^{-4}\cdot \dfrac{ 2m^{-1} p^3}{2pq^2}

1.

m^{-1}=\dfrac{1}{m}

2.

q^0=1

3.

2pm^{-1}q^0=2p\cdot \dfrac{1}{m}\cdot 1=\dfrac{2p}{m}

4.

(2pm^{-1}q^0)^{-4}=\left(\dfrac{2p}{m}\right)^{-4}=\left(\dfrac{m}{2p}\right)^4=\dfrac{m^4}{(2p)^4}=\dfrac{m^4}{16p^4}

5.

m^{-1}=\dfrac{1}{m}

6.

2m^{-1} p^3=2\cdot \dfrac{1}{m}\cdot p^3=\dfrac{2p^3}{m}

7.

\dfrac{ 2m^{-1} p^3}{2pq^2}=\dfrac{\frac{2p^3}{m}}{2pq^2}=\dfrac{2p^3}{m}\cdot \dfrac{1}{2pq^2}=\dfrac{p^2}{mq^2}

8.

(2pm^{-1}q^0)^{-4}\cdot \dfrac{ 2m^{-1} p^3}{2pq^2}=\dfrac{m^4}{16p^4}\cdot \dfrac{p^2}{mq^2}=\dfrac{m^3}{16p^2q^2}

8 0
3 years ago
I'll mark the best or the first as brainliest.
FinnZ [79.3K]

Answer:

<em><u>Here</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>error</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em>

<em><u>\pi {r}^{2}</u></em>

<em><u>It</u></em><em><u> </u></em><em><u>should</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>been</u></em><em><u> </u></em><em><u>,</u></em>

<em><u>2\pi {r}^{2}</u></em>

Step-by-step explanation:

<em><u>Corrected</u></em><em><u> </u></em><em><u>formula</u></em><em><u>:</u></em>

<em><u>2\pi  {r}^{2}  + 2\pi rh</u></em>

<em><u>= 2\pi ({5}^{2})  + 2\pi(5)(10.6)</u></em>

<em><u>= 50\pi + 106\pi</u></em>

<em><u>= 156\pi</u></em>

<em><u>= 489.84 {yd}^{2}</u></em>

<em><u>approx . \: 489.8 {yd}^{2} (ans)</u></em>

6 0
3 years ago
R+q-r; use q=6,and r=2
Anastasy [175]

Answer:

so you would replace all r with 2 which is 2+q-2

then replace the q with 6 so it would be: r+6-r

combined both of these to get

2+6-2

which would equal to 6

add the 2 and the 6 to get 8

then subtract 2 to get 6

3 0
3 years ago
Read 2 more answers
If an angle measures between 90 and 180, how is it classified
sukhopar [10]

The name of the angle is obtuse

5 0
3 years ago
Other questions:
  • Trapezoid ABCD is similar to rectangle EFGH. Side CD is congruent to side _____.<br>​
    11·2 answers
  • How many inches are in 250 centimeters?
    14·1 answer
  • Need help with number 5
    10·2 answers
  • -27=2x^2-4 PLEASE HELP ASAP
    5·2 answers
  • Resolver el problema
    14·1 answer
  • Belle bought 18 seeds in order to plant an herb garden for her grandma. Of the seeds she bought, 10 were parsley seeds.
    14·1 answer
  • Can you prove these similar triangle step by step?
    14·1 answer
  • What is the slope of the line through (-1,2) and (-3,2)
    6·1 answer
  • Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends o
    7·1 answer
  • What is a value of this​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!