Answer:
√2
Step-by-step explanation:
Solving the given expression step by step:
![\frac{\sqrt{36} }{\sqrt{18} } = \frac{6}{3\sqrt{2} }\ \ \ [\because \sqrt{36} = 6 \ and \ \sqrt{18} = 3\sqrt{2}] \\ = \frac{3 \times 2}{3\sqrt{2} } = \frac{ 2}{\sqrt{2} }= \sqrt{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B36%7D%20%7D%7B%5Csqrt%7B18%7D%20%7D%20%3D%20%5Cfrac%7B6%7D%7B3%5Csqrt%7B2%7D%20%7D%5C%20%5C%20%5C%20%5B%5Cbecause%20%5Csqrt%7B36%7D%20%3D%206%20%5C%20and%20%5C%20%5Csqrt%7B18%7D%20%3D%203%5Csqrt%7B2%7D%5D%20%5C%5C%20%3D%20%5Cfrac%7B3%20%5Ctimes%202%7D%7B3%5Csqrt%7B2%7D%20%7D%20%3D%20%5Cfrac%7B%202%7D%7B%5Csqrt%7B2%7D%20%7D%3D%20%5Csqrt%7B2%7D)
We rationalize denominator and change it into a simpler form as soon as possible.
Answer:
Tenths.
Step-by-step explanation:
Answer:
9.833333
Step-by-step explanation:
Given:

To find the vertical and horizontal asymptotes:
The line x=L is a vertical asymptote of the function f(x) if the limit of the function at this point is infinite.
But, here there is no such point.
Thus, the function f(x) doesn't have a vertical asymptote.
The line y=L is a vertical asymptote of the function f(x) if the limit of the function (either left or right side) at this point is finite.

Thus, y = 0 is the horizontal asymptote for the given function.
Answer:
x = z/(6πy)
Step-by-step explanation:
Divide by the coefficient of x.
z/(6πy) = 6πxy/(6πy)
z/(6πy) = x