- Standard reduction potential of Ag/Ag⁺ is 0.80 v and that of Cu⁺²(aq)/Cu⁰ is +0.34 V.
- The couple with a greater value of standard reduction potential will oxidize the reduced form of the other couple.
Ag⁺ will be reduced to Ag(s) and Cu⁰ will be oxidized to Cu²⁺
Anode reaction: Cu⁰(s) → Cu²⁺ + 2 e⁻ E⁰ = +0.34 V
Cathode reaction: Ag⁺(aq) + e → Ag(s) E⁰ = +0.80 V
Cell reaction: Cu⁰(s) + 2 Ag⁺(aq) → Cu⁺²(aq) + 2 Ag⁰(s)
E⁰ cell = E⁰ cathode + E⁰ anode
= 0.80 + (-0.34) = + 0.46 V
Answer:
The density of the metal is 0.561 g/mL
Explanation:
The computation of the density of the metal is shown below;
As we know that
The Density of the metal is

where,
Mass = 4.9g
Change in volume = 6.9 mL
Now place these values to the above formula
So, the density of the metal is

= 0.561 g/mL
Hence, the density of the metal is 0.561 g/mL
We simply applied the above formula so that the correct density could arrive
<h2>Answer:</h2>
It means the waves collides and constructive interference occurred.
<h3>Explanation:</h3>
If the two waves coming from the opposite direction collide with each other, there are two way of their interference.
- Constructive interference: An interference which results in the increase in energy. And it is when crust of a wave comes on the crust of second wave.
- Destructive interference: An interference which results in decrease in energy of the resulting wave and colliding waves cancel the result of each other.
Hence in experiment there will be constructive interference.
Intermolecular force for solids is high. Whereas low in gases. The smell of agarbatti spreads immediately because the molecules of air diffuses very fastly.
Answer:
0.84 mol
Explanation:
Given data:
Moles of ZnCl₂ produced = ?
Mass of Zn = 55.0 g
Solution:
Chemical equation:
2HCl + Zn → ZnCl₂ + H₂
Number of moles of Zn:
Number of moles = mass / molar mass
Number of moles = 55.0 g/ 65.38 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of Zn with ZnCl₂ from balance chemical equation.
Zn : ZnCl₂
1 : 1
0.84 : 0.84
So from 55 g of Zn 0.84 moles of zinc chloride will be produced.