Answer:
A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes
Explanation:
Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:
2as = Vf² - Vi²
s = (Vf² - Vi²)/2a
where,
Vf = Final Velocity of Car = 0 mi/h
Vi = Initial Velocity of Car = 50 mi/h
a = deceleration of car
s = distance covered
Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.
So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:
s = vt
FOR SOBER DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 0.33 s
s = s₁
Therefore,
s₁ = (73.33 ft/s)(0.33 s)
s₁ = 24.2 ft
FOR DRUNK DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 1 s
s = s₂
Therefore,
s₂ = (73.33 ft/s)(1 s)
s₂ = 73.33 ft
Now, the distance traveled by drunk driver's car further than sober driver's car is given by:
ΔS = s₂ - s₁
ΔS = 73.33 ft - 24.2 ft
<u>ΔS = 49.13 ft</u>
Answer:
About 5 % of the universe is visible.
Estimates are that 68 % of the universe consists of "dark energy" and 27% of the universe consists of "dark matter". Currently 95 % of the universe is not currently visible to the scientists involved (cannot be explained by means that we know).
The answer is B frequency. When frequency increases more wave crests pass a fixed point each second. That means the wavelength shortens. So, as frequency increases, wavelength decreases
Answer:
heat pressure, electron degeneracy, neutron degeneracy, and nothing
Explanation:
Main Sequence Star: It is a star in which nuclear fusion is happening in the core of the star. Hydrogen molecules fuse together to generate Helium. This nuclear fusion generates outward gas pressure and radiation pressure which balances the inward gravity thus creating an equilibrium which keeps the stars in shape.
White dwarf: It is the end stage of a medium sized star like the Sun. Outer layers of the star are thrown in the form a shell/bubble leaving a small and dense core in the center called as white dwarf. This core consists of carbon and oxygen. Nuclear fusion doesn't occur in the core of white dwarfs. The inward gravity is balanced by the electron degeneracy pressure. Thus these stars will keep on radiating the remaining heat and will turn in to a black dwarf at the end.
Neutron Star: This is the end stage of a supermassive star (1-3 times the mass of the Sun). At the last stage of the life the core collapses. In these stars the inward gravity is so huge that the pressure overcomes the electron degeneracy pressure and crushes together the electron and proton to form neutron. The neutron then stops the collapse and balances the inward gravity.
Black Hole: This is the end stage of a hyper massive stars weighing more than 3 times the mass of the Sun. The inward gravitational force is so huge that even the neutrons are not able to stop the collapse the core. thus the mass of the star collapses into a very small area of immense gravity. There is nothing that can balance this inward gravity.