Answer:
Power input, P = 2880 watts
Explanation:
It is given that,
Voltage of the motor, V = 240 V
Current required, I = 12 A
Weight lifted, W = 2000 lb
It is lifting at a speed of 25 ft/min. We need to find the power input to the motor. The product of current and voltage is called power input of the motor.


P = 2880 watts
So, the power input of the motor is 2880 watts. Hence, this is the required solution.
Answer:
We know there's two forces acting on a book while it sits on a table:the force of gravity pulling it down, and the normal force of the table acting upward on the book. The book isn't accelerating while it sits there. That's because the weight of the book is being counteracted by the normal force of the table.
Explanation:
There are two forces acting upon the book. One force - the Earth's gravitational pull - exerts a downward force. The other force - the push of the table on the book (sometimes referred to as a normal force) - pushes upward on the book.
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
The wind will blow from higher pressure over the water to lower pressure over the land causing sea breeze. <span>The </span>sea breeze<span> strength will vary depending on the temperature difference </span>between<span> the </span>land<span> and the ocean</span>