1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
2 years ago
11

The distance and displacement of a object in motion can be the same (true or false)

Physics
1 answer:
Rasek [7]2 years ago
4 0

Aswer:

False, the values ​​of the distance traveled and the displacement only coincide when the trayectorie is a straight line. Otherwise, the distance will always be greater than the offset.

Although these terms are used synonymously in other cases, they are totally different. Since the distance that a mobile travels is the equivalent of the length of its trajectory. Whereas, the displacement will be a vector magnitude.

<u>xXCherryCakeXx</u>.

You might be interested in
Since the Sun has more mass, why do objects on earth not move closer to the Sun instead of staying put on Earth?
maw [93]

Answer:

Because the Earth has it's own gravity that keeps us put, and we also have the moon.

Explanation:

6 0
2 years ago
The angle between the two force of magnitude 20N and 15N is 60 degrees (20N force being horizontal) determine the resultant in m
BARSIC [14]

A) The resultant force is 30.4 N at 25.3^{\circ}

B) The resultant force is 18.7 N at 43.9^{\circ}

Explanation:

A)

In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.

The two forces are:

F_1 = 20 N at 0^{\circ} above x-axis

F_2 = 15 N at 60^{\circ} above y-axis

Resolving each force:

F_{1x}=F_1 cos \theta = (20)(cos 0)=20 N\\F_{1y}=F_1 sin \theta =(20)(sin 0)=0 N

F_{2x}=F_2 cos \theta = (15)(cos 60)=7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 60)=13.0 N

So, the components of the resultant are:

F_x = F_{1x}+F_{2x}=20+7.5 = 27.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N

And the magnitude of the resultant is:

F=\sqrt{F_x^2+F_y^2}=\sqrt{27.5^2+13.0^2}=30.4 N

And the direction is:

\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{27.5})=25.3^{\circ}

B)

In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

\theta=180^{\circ}-60^{\circ}=120^{\circ}

So we have:

F_{2x}=F_2 cos \theta = (15)(cos 120)=-7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 120)=13.0 N

So, the components of the resultant this time are:

F_x = F_{1x}+F_{2x}=20-7.5 = 12.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N

And the magnitude is:

F=\sqrt{F_x^2+F_y^2}=\sqrt{13.5^2+13.0^2}=18.7 N

And the direction is:

\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{13.5})=43.9^{\circ}

Learn more about vector addition:

brainly.com/question/4945130

brainly.com/question/5892298

#LearnwithBrainly

7 0
3 years ago
A car is 200 m from a stop sign and traveling toward the sign at 40.0 m/s. At this time, the driver suddenly realizes that she m
victus00 [196]

Answer:

The acceleration of the car will be a=9600m/sec^

Explanation:

We have given that distance from stop sign s = 200 m

Time t = 0.2 sec

We have to find the constant acceleration

Now from second equation of motion s=ut+\frac{1}{2}at^2

200=40\times 0.2+\frac{1}{2}\times a\times 0.2^2

a=9600m/sec^

So the acceleration of the car will be a=9600m/sec^

6 0
3 years ago
An infant's toy has a 120 g wooden animal hanging from a spring. If pulled down gently, the animal oscillates up and down with a
Morgarella [4.7K]

Answer:

0.37 m

Explanation:

The angular frequency, ω, of a loaded spring is related to the period, T,  by

\omega = \dfrac{2\pi}{T}

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

v = \omega A

A is the amplitude or maximum displacement from the equilibrium.

v = \dfrac{2\pi A}{T}

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

v = \dfrac{2\times3.142\times0.25\text{ m}}{0.58\text{ s}} = 2.71 \text{ m/s}

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

v_f^2 = v_i^2+2ah

v_f is the final velocity, v_i is the initial velocity (same as v above), a is acceleration of gravity and h is the height.

h = \dfrac{v_f^2 - v_i^2}{2a}

h = \dfrac{0^2 - 2.71^2}{2\times-9.81} = 0.37 \text{ m}

3 0
3 years ago
Two cars, one of mass 1300 kg, and the second of mass 2400 kg, are moving at right angles to each other when they collide and st
Margarita [4]

To solve this problem we will apply the momentum conservation theorem, that is, the initial momentum of the bodies must be the same final momentum of the bodies. The value that will be obtained will be a vector value of the final speed of which the magnitude will be found later. Our values are given as,

m_1 = 1300kg

m_2 = 2400kg

u_1 = 12m/s i

u_2 = 18m/s j

Using conservation of momentum,

m_1u_1+m_2u_2 = (m_1+m_2)v_f

1300*12i-2400*18j = (1300+2400)v_f

Solving for v_f

v_f = 4.2162i-11.6756j

Using the properties of vectors to find the magnitude we have,

|v| = \sqrt{(4.2162^2)+(-11.6756)^2}

|v| = 12.4135m/s

Therefore the magnitude of the velocity of the wreckage of the two cars immediately after the collision is 12.4135m/s

6 0
2 years ago
Other questions:
  • Why is a suction effect experienced by a person standing close to the platform at a station when a fast train passes?
    12·1 answer
  • Please help me with 1 and 2
    6·1 answer
  • PNEWTON<br> What is the ist law of motion?
    12·1 answer
  • Elabora una tabla, como la del ejemplo, con los resultados obtenidos en los test que desarrollaste en actividades anteriores. Lu
    9·1 answer
  • A conclusion is a possible answer to a question. True or False?
    15·2 answers
  • How do you know when to use each equations of motion while solving numericals? Please help as soon as possible .
    8·1 answer
  • A person pushes a box across the floor the energy from the person moving arm is transferred to the box in the box in the floor b
    12·1 answer
  • "On a good day, it takes Mr. Hess 23 minutes (1380 seconds) to drive the 12 miles (19,300 meters). What is his average velocity
    12·1 answer
  • If you place a paper clip very close to a magnet, the paper clip
    15·1 answer
  • a single rectangular slit of width of 50 is illuminated by red light with a wavelength of 600 nm. a screen is placed a certain d
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!