1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
3 years ago
7

ادقال لwhat is quadratic equation​

Mathematics
1 answer:
7nadin3 [17]3 years ago
7 0

Answer:

A quadratic equation is an algebraic equation  that involves ax(squared) + bx + c = 0

There will always be a square and A and B

You might be interested in
Cos ( α ) = √ 6/ 6 and sin ( β ) = √ 2/4 . Find tan ( α − β )
Zina [86]

Answer:

\purple{ \bold{ \tan( \alpha  -  \beta ) = 1.00701798}}

Step-by-step explanation:

\cos( \alpha ) =  \frac{ \sqrt{6} }{6}  =  \frac{1}{ \sqrt{6} }  \\  \\  \therefore \:  \sin( \alpha )  =  \sqrt{1 -  { \cos}^{2} ( \alpha ) }  \\  \\  =  \sqrt{1 -  \bigg( {\frac{1}{ \sqrt{6} } \bigg )}^{2} }  \\  \\ =  \sqrt{1 -  {\frac{1}{ {6} }}}  \\  \\ =  \sqrt{ {\frac{6 - 1}{ {6} }}}   \\  \\  \red{\sin( \alpha ) =  \sqrt{ { \frac{5}{ {6} }}} } \\  \\  \tan( \alpha ) =  \frac{\sin( \alpha ) }{\cos( \alpha ) }  =  \sqrt{5}  \\  \\ \sin( \beta )  =  \frac{ \sqrt{2} }{4}  \\  \\  \implies \: \cos( \beta )  =   \sqrt{ \frac{7}{8} }  \\  \\ \tan( \beta )  =  \frac{\sin( \beta ) }{\cos( \beta ) } =  \frac{1}{ \sqrt{7} }   \\  \\  \tan( \alpha  -  \beta ) =  \frac{ \tan \alpha  -  \tan \beta }{1 +  \tan \alpha .  \tan \beta}  \\  \\  =  \frac{ \sqrt{5} -  \frac{1}{ \sqrt{7} }  }{1 +  \sqrt{5} . \frac{1}{ \sqrt{7} } }  \\  \\  =  \frac{ \sqrt{35} - 1 }{ \sqrt{7}  +  \sqrt{5} }  \\  \\  \purple{ \bold{ \tan( \alpha  -  \beta ) = 1.00701798}}

8 0
3 years ago
What do I have to do in this math problem
Mars2501 [29]
Put 7 random dot on a graph , wat shape does it make?
8 0
2 years ago
Read 2 more answers
WITHIN THE NEXT 5 MIN I WILL GIVE U BRAINIEST
ivann1987 [24]

Opps, wrong answer

Deleted

3 0
2 years ago
The question about triangles is below.
rusak2 [61]

Answer:

A.

Step-by-step explanation:

5 0
2 years ago
Help I cannot figure this question out.
netineya [11]

Answer:

B. x = -1 ± i

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Factoring
  • Quadratic Formula: \displaystyle x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

<u>Algebra II</u>

  • Imaginary Numbers: √-1 = i

Step-by-step explanation:

<u>Step 1: Define</u>

x² + 2x = -2

<u>Step 2: Identify Variables</u>

  1. Rewrite Quadratic in Standard Form [Addition Property of Equality]:        x² + 2x + 2 = 0
  2. Break up Quadratic:                                                                                        a = 1, b = 2, c = 2

<u>Step 3: Solve for </u><em><u>x</u></em>

  1. Substitute in variables [Quadratic Formula]:                                                \displaystyle x=\frac{-2 \pm \sqrt{2^2-4(1)(2)}}{2(1)}
  2. [√Radical] Evaluate exponents:                                                                     \displaystyle x=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2(1)}
  3. Multiply:                                                                                                           \displaystyle x=\frac{-2 \pm \sqrt{4-8}}{2}
  4. [√Radical] Subtract:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-4}}{2}
  5. [√Radical] Factor:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-1}\sqrt{4}}{2}
  6. [√Radicals] Simplify:                                                                                       \displaystyle x=\frac{-2 \pm 2i}{2}
  7. Factor:                                                                                                             \displaystyle x=\frac{2(-1 \pm i)}{2}
  8. Divide:                                                                                                             \displaystyle x = -1 \pm i
3 0
3 years ago
Other questions:
  • .
    12·2 answers
  • Explain how to use the distributive property to find the product (3) ( 4 1 5 ) .
    15·2 answers
  • What is the solution of the system?
    7·1 answer
  • Which values represent the dependent variable? (2,3) (2,-2) (-4,-2) (-2,2) A. {–4, –2, 2} B. {–4, 2, 3} C. {–4, –2, 3} D. {–2, 2
    9·1 answer
  • How many people will 5 pitchers serve if one eight pitcher serves one person
    6·1 answer
  • Can someone help me I really don’t understand this..
    13·2 answers
  • 90°<br> 30<br> x help me with this work
    12·1 answer
  • Nicalos bought $8.10 of candy corn it cost $4.50 per pound
    12·1 answer
  • Identify the type of figure
    9·2 answers
  • Anyone know asap pls
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!