Answer:
and as 
Step-by-step explanation:
Given
-- Missing from the question
Required
The behavior of the function around its vertical asymptote at 

Expand the numerator

Factorize

Factor out x + 1

We test the function using values close to -2 (one value will be less than -2 while the other will be greater than -2)
We are only interested in the sign of the result
----------------------------------------------------------------------------------------------------------
As x approaches -2 implies that:
Say x = -3


We have a negative value (-12); This will be called negative infinity
This implies that as x approaches -2, p(x) approaches negative infinity

Take note of the superscript of 2 (this implies that, we approach 2 from a value less than 2)
As x leaves -2 implies that: 
Say x = -2.1

We have a negative value (-56.1); This will be called negative infinity
This implies that as x leaves -2, p(x) approaches negative infinity

So, the behavior is:
and as 
Answer:
The correct answer is option (C)-0.245 = 2.160(0.205)
Step-by-step explanation:
Solution
Given that:
The slope = - 0.245
The size sample = n = 15
The standard error = 0.205
The confidence level = 95
The Significance level= α = (100- 95)% = 0.05
Now,
The freedom of degree = n-2 = 15 -2= 13
Thus,
the critical value = t* = 2.16
By applying Excel = [TINV (0.05, 13)]
The Margin of error is = t* (standard error)
=2.16 *0.205
= 0.4428
Your answer is c i pretty insurance
Angle 1 is congruent to angles 3, 5, and/or 7
Angle 2 is congruent to angles 4, 6, and/or 8
Angle 5 is congruent to angles 7, 3 and/or 1
Angle 6 is congruent to angles 8, 4, and/or 2
Any of these answers could work for the blanks.
Angles 1 and 3, 2 and 4, 5 and 7, and angles 6 and 8 are congruent because they are vertical angles. They have the same vertex. Not all of these are congruent to each other if this doesn’t make sense. It’s only 1 is congruent to 3, 2 congruent to 4, etc.
Then you have your corresponding angles. These are ones like angles 2 and 6, then 1 and 5. You can also have 8 and 4, or 7 and 3 as corresponding angles
Transversal angles are different. This would be like angles 3 and 4, or 1 and 2. They are not always congruent. The only time they will be congruent is if they are both 90°. Transversal angles are essentially supplementary angles on the transversal line (the line that intersects through the set of parallel lines)