Answer:
see explanation
Step-by-step explanation:
(a)
Given
2k - 6k² + 4k³ ← factor out 2k from each term
= 2k(1 - 3k + 2k²)
To factor the quadratic
Consider the factors of the product of the constant term ( 1) and the coefficient of the k² term (+ 2) which sum to give the coefficient of the k- term (- 3)
The factors are - 1 and - 2
Use these factors to split the k- term
1 - k - 2k + 2k² ( factor the first/second and third/fourth terms )
1(1 - k) - 2k(1 - k) ← factor out (1 - k) from each term
= (1 - k)(1 - 2k)
1 - 3k + 2k² = (1 - k)(1 - 2k) and
2k - 6k² + 4k³ = 2k(1 - k)(1 - 2k)
(b)
Given
2ax - 4ay + 3bx - 6by ( factor the first/second and third/fourth terms )
= 2a(x - 2y) + 3b(x - 2y) ← factor out (x - 2y) from each term
= (x - 2y)(2a + 3b)
Answer:
Its either answer one or two. I believe it's answer one.
Answer:
Volume is 
Solution:
As per the question:
Diameter, d = 40 m
Radius, r = 20 m
Now,
From north to south, we consider this vertical distance as 'y' and height, h varies linearly as a function of y:
iff
h(y) = cy + d
Then
when y = 1 m
h(- 20) = 1 m
1 = c.(- 20) + d = - 20c + d (1)
when y = 9 m
h(20) = 9 m
9 = c.20 + d = 20c + d (2)
Adding eqn (1) and (2)
d = 5 m
Using d = 5 in eqn (2), we get:

Therefore,

Now, the Volume of the pool is given by:

where
A = 

Thus




![V = [- 533.33cos\theta + 1000\theta]_{0}^{2\pi}](https://tex.z-dn.net/?f=V%20%3D%20%5B-%20533.33cos%5Ctheta%20%2B%201000%5Ctheta%5D_%7B0%7D%5E%7B2%5Cpi%7D)

I good accumulator to use would be symbolab.com
The answer would be 3072/5629
1. The first 10 multiples of 13 are 13, 26, 39, 52, 65, 78, 91, 104, 117, and 130.
2. x - 5
3. x + 80