1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lianna [129]
3 years ago
5

The rectangle below has been enlarged by a scale of 3.5.

Mathematics
2 answers:
svetlana [45]3 years ago
7 0

Answer:

588

Step-by-step explanation:

Got it right on Edgen

posledela3 years ago
5 0

Answer:

168

Step-by-step explanation:

First multiply 8 times 6 to get the first area then multiply by 3.5

You might be interested in
the total of three cousins' ages 48. sam is half as old as jack and 4 years older than max. how old are the cousins
weeeeeb [17]
HEY THERE.

I THINK THE CORRECT ANSWER IS...SAM IS 20 
7 0
3 years ago
1. Which graphs could represent a proportional relationship? Explain how you decided.
Veronika [31]
A because I have no idea
8 0
3 years ago
Read 2 more answers
Integrate the following problem:
vazorg [7]

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

7 0
3 years ago
Read 2 more answers
How many pickles grow on a tree a year
andrezito [222]

Answer:

50-65 days

Step-by-step explanation:

50-65 days

Pickling cucumbers should be ready to harvest between 50-65 days from planting and can be picked over the course of a several weeks. Growing pickling cucumber plants is just like growing other types of cucumber. They prefer a soil pH of 5.5, well-drained soil, and lots of nitrogen.

5 0
3 years ago
If f(x)= —5x — 11, then f-1(x)=
Salsk061 [2.6K]
F(x)=-5x-11
y=-5x-11
x=-5y-11
x+11=-5y
\frac{x+11}{-5}=y
f^-1= \frac{x+11}{-5}
8 0
4 years ago
Other questions:
  • exponential growth model. I started but can't quite figure out how to finish the problems as far as what to do with the "e"
    12·1 answer
  • 111111111111111111 anwser
    7·2 answers
  • A scientist had 3 1/2 liters of vinegar. He poured 2/3 of the vinegar into beaker. He then used 3/5 of the vinegar in the beaker
    9·1 answer
  • Use continuity to evaluate the limit. lim x→π 5 sin(x + sin x)
    12·1 answer
  • The dot plot shows the numbers of text message received by students over the weekend .
    15·2 answers
  • Can anyone help me with this question please
    14·2 answers
  • Please help me with my math problem
    5·1 answer
  • A 12 sided solid has equal-sized faces numbered 1 to 12. A: find P(number greater than 10) B: find p(number less than 5 ) C: if
    12·2 answers
  • “Study the first 2 circles in each row and complete the 3rd one”
    12·1 answer
  • Calculate the value of x and y
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!