Answer:
C. $128
Step-by-step explanation:
320 x 0.5 = 160
320 - 160 = 160
160 x 0.20 = 32
160 - 32 = 128
Answer:
-100
Step-by-step explanation:
1/5 of -125 will be -25.
So, if she deposits 1/5 of what she owes, then she will deposit $25.
Her balance will then become -100 because she paid back 25.
Her new balance is -100
28:35
Those are divisible by 7 so divide both sides by seven
the answer is 4:5
Answer:
When we have something like:
![\sqrt[n]{x}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D)
It is called the n-th root of x.
Where x is called the radicand, and n is called the index.
Then the term:
![\sqrt[4]{16}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D)
is called the fourth root of 16.
And in this case, we can see that the index is 4, and the radicand is 16.
At the end, we have the question: what is the 4th root of 16?
this is:
![\sqrt[4]{16} = \sqrt[4]{4*4} = \sqrt[4]{2*2*2*2} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D%20%3D%20%5Csqrt%5B4%5D%7B4%2A4%7D%20%20%3D%20%5Csqrt%5B4%5D%7B2%2A2%2A2%2A2%7D%20%3D%202)
The 4th root of 16 is equal to 2.
<u>Given</u>:
Given that the data are represented by the box plot.
We need to determine the range and interquartile range.
<u>Range:</u>
The range of the data is the difference between the highest and the lowest value in the given set of data.
From the box plot, the highest value is 30 and the lowest value is 15.
Thus, the range of the data is given by
Range = Highest value - Lowest value
Range = 30 - 15 = 15
Thus, the range of the data is 15.
<u>Interquartile range:</u>
The interquartile range is the difference between the ends of the box in the box plot.
Thus, the interquartile range is given by
Interquartile range = 27 - 18 = 9
Thus, the interquartile range is 9.