Answer:
Concentration AgBr at saturation = 7.07 x 10⁻⁷M
Explanation:
Given AgBr(s) => Ag⁺(aq) + Br⁻(aq) ; Ksp = 5 x 10⁻¹³ = [Ag⁺][Br⁻]
I --- 0 0
C --- +x +x
E --- x x
[Ag⁺][Br⁻] = (x)(x) = x² = 5 x 10⁻¹³ => x = SqrRt(5 x 10⁻¹³) = 7.07 x 10⁻⁷M
Answer: SO₂ + H₂O → HSO₃ ⁻ + H⁺
Justification:
1) Ionization means formation of ions.
2) Ions are species that are not neutral, they are charged, in virtue of having less or more electrons than protons.
3) Ionization may happen in different environments.
4) Ionic compunds, like Mg(OH)₂ dissociate into ions (ionize) in water. That is the example shown in the fourth option:
Mg(OH)₂ → Mg ²⁺ + 2OH⁻
5) How much a ionic compound dissociates in water (ionize) depends on the Ksp (product solubility constant) which measures the concentrations of the ions that can be in the solution.
6) The Ksp for Mg(OH)₂ is very low, meaning that it will slightly ionize.
7) SO₂ + H₂O forms H₂SO₄, which is a strong acid, meaning that it will ionize fully in water, into the ions HSO₃ ⁻ and H⁺, so the third option is a good example of ionization.
Answer:
21.5 g.
Explanation:
Hello!
In this case, since the reaction between the given compounds is:

We can see that according to the law of conservation of mass, which states that matter is neither created nor destroyed during a chemical reaction, the total mass of products equals the total mass of reactants based on the stoichiometric proportions; in such a way, we first need to compute the reacted moles of Li3P as shown below:

Now, the moles of Li3P consumed by 15 g of Al2O3:

Thus, we infer that just 0.29 moles of 0.73 react to form products; which means that the mass of formed products is:

Therefore, the total mass of products is:

Which is not the same to the reactants (53 g) because there is an excess of Li₃P.
Best Regards!
A water molecule, because of its shape, is a polar molecule.
Yes it is C and B because I did this before.