Answer:
Dissolve 226 g of KCl in enough water to make 1.5 L of solution
Explanation:
1. Calculate the moles of KCl needed

2. Calculate the mass of KCl

3. Prepare the solution
- Measure out 224 g of KCl.
- Dissolve the KCl in a few hundred millilitres of distilled water.
- Add enough water to make 1.5 L of solution.
Mix thoroughly to get a uniform solution.
Answer:
Thx Have a Fantastic day :)
Explanation:
<span>4 x 36 moles. of Phosporus and 10 x 36 of Oxygen. I hope this helps. (:</span>
Oxidation state of I is (-1) and for CO it is zero. Let's assume that the oxidation state of Fe in Fe(CO)₄I₂<span> (s) is x. For whole compound, the charge is zero.
Sum of oxidation numbers in all elements = Charge of the compound.
Here we have 1Fe , 4CO and 2I
hence we can find the oxidation state as;
x + 4*0 + 2*(-1) = 0
x + 0 - 2 = 0
x = +2
Hence the oxidation state of Fe in product </span>Fe(CO)₄I₂ (s) is +2.
Same as we can find the oxidation state (y) of Fe in Fe(CO)₅(s).
y + 5*0 = 0
y = 0
Since oxidation state of Fe increased from 0 to +2, the oxidized element is Fe in the given reaction.
The matter will be consumed by other living organisms and the blood will settle to the bottom of the body