It is the velocity of the object.
Answer:
393.6m/s
Explanation:
Given parameters:
Acceleration = 8.5m/s²
Distance = 300m
Final velocity = 400m/s
Unknown:
Initial velocity = ?
Solution:
To solve this problem, we use the expression below;
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
So;
v² - 2as = u²
u² = v² - 2as
u² = 400² - (2 x 8.5 x 300)
u = 393.6m/s
Answer:
Explanation:
2 )
power of an electric device = V² / R where V is volts and R is resistance
putting given data
power = 9²/ 5
= 16.2 J/s
energy produced in 7 minutes
= 16.2 x 7 x 60
= 6804J .
3 ) Power of an electrical device
= V² / R
= V X I where I is current
= 4.5 x .5
= 2.25 W or J/s
4 )
energy used in 3 minutes with power of 2.25 W
= 2.25 x 3 x 60
= 405 J .
7 )
power of a electrical device
= V x I
IR x I where R is resistance .
= I²R
putting given data
power = .005² x 50
= 1.25 x 10⁻³ W .
8 )
Energy used up by a 60 W bulb in 2.5 hours
= 60 x 2.5 x 60 x 60
= 5.4 x 10⁵ J .
The electrostatic force between two charged objects is given by

where
k is the Coulomb's constant
q1 is the charge of the first object
q2 is the charge of the second object
r is the separation between the two objects
In our problem:



So if we plug these numbers into the equation, we can find the electrostatic force between the two objects:
Answer:
Explanation:
Every atom has no overall charge (neutral). This is because they contain equal numbers of positive protons and negative electrons. These opposite charges cancel each other out making the atom neutral.