10.2 all you have to do is add up all the sides... hope this helps!
That is an annuity and use the attached formula.
Total = 300 * [(1.055)^11 -1] / .055 -300
Total = 300 *
<span>
<span>
<span>
1.8020924036
</span>
</span>
</span>
-1 /.055 -300
Total = 300 *
<span>.8020924036 / .055 - 300
</span>Total = 300 *
<span>
<span>
<span>
14.5834982473
</span>
</span>
</span>
-300
Total =
<span>
<span>
<span>
4375.0494741818
</span>
</span>
</span>
-300
Total =
<span>4075.05
</span>
Susie's age from x years ago would be the difference of her current age and the numbers of years that passed which is x. The expression that best represent her age x years ago is 14 - x. Thus, the answer is letter "B. 14 - x".
Answer:
Step-by-step explanation:
The continuous compound formula is
where P is the principle or starting value, r is the growth rate in decimal form, and t is the time in years. For us:

which would probably round to just 3848 people.
Answer:
1). 0.903547
2). 0.275617
Step-by-step explanation:
It is given :
K people in a party with the following :
i). k = 5 with the probability of 
ii). k = 10 with the probability of 
iii). k = 10 with the probability 
So the probability of at least two person out of the 'n' born people in same month is = 1 - P (none of the n born in the same month)
= 1 - P (choosing the n different months out of 365 days) = 
1). Hence P(at least 2 born in the same month)=P(k=5 and at least 2 born in the same month)+P(k=10 and at least 2 born in the same month)+P(k=15 and at least 2 born in the same month)
= 
= 
= 0.903547
2).P( k = 10|at least 2 share their birthday in same month)
=P(k=10 and at least 2 born in the same month)/P(at least 2 share their birthday in same month)
= 
= 0.0.275617