<h2>Answer:</h2>
Option A is correct
Adding an enzyme to decrease the activation energy of the reaction
<h2>Explanation:</h2>
Enzymes are the biological catalyst. They are proteins in nature. They are naturally found in humans,animals,micro-organisms,plants etc. They catalyze the chemical reactions by lowering activation energy and without being consumed in it.
Which element requires the least amount of
energy to remove the most loosely held electron
from a gaseous atom in the ground state?
<h3>Answer-</h3><h3>Na</h3>
The answer is D) 144 grams O2
Answer:
Formic acid, citric acid, Oxalic acid, washing soda, baking soda, etc. can be some examples of natural acids and natural bases. They both have domestic, industrial, and various other purposes.
Explanation:
<h3><u>
NATURAL ACIDS</u>
:</h3>
There are lots of natural acids present in our nature. Some of them are the following:
> <u>Formic acid</u>
USE: It is used in the stimulation of oil and gas wells as it is less reactive towards the metal.
> <u>Citric acid</u>
USE: It is considered as the best rust remover as it doesn't harm the metal just remove the rust.
> <u>Oxalic acid</u>
USE: It easily remove iron and ink stains and that's why it is used as an acid rinsing material in Laundries.
<h3><u>
NATURAL BASES</u>
:</h3>
There is a variety of natural base found in our nature which founds a lot of uses in day to day life. some of them are the following:
> <u>Washing soda</u>
USE: It is used in commercial detergent mixture to treat hard water.
> <u>Baking soda</u>
USE: It is the best rising agent used mostly in cooking and for domestic purposes like removing stains, etc..
<u>Answer:</u> The value of
for the given reaction is 1.435
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

Given mass of
= 9.2 g
Molar mass of
= 92 g/mol
Volume of solution = 0.50 L
Putting values in above equation, we get:

For the given chemical equation:

<u>Initial:</u> 0.20
<u>At eqllm:</u> 0.20-x 2x
We are given:
Equilibrium concentration of
= 0.057
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
![[NO_2]_{eq}=2x=(2\times 0.143)=0.286M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.143%29%3D0.286M)
![[N_2O_4]_{eq}=0.057M](https://tex.z-dn.net/?f=%5BN_2O_4%5D_%7Beq%7D%3D0.057M)
Putting values in above expression, we get:

Hence, the value of
for the given reaction is 1.435