Answer:
Hydrogen and oxygen bonds
Explanation:
Explanation:
170-95.3 = 74.7
that means
74.7% of water in hydrate
Answer: 60 grams
Explanation: (60 ml)*(1g/ml) = 60g
Answer:
1.87x10⁻³ M SO₄²⁻
Explanation:
The reaction of SO₄²⁻ with Ba²⁺ (From Ba(NO₃)₂) is:
SO₄²⁻(aq) + Ba²⁺(aq) → BaSO₄(s)
<em>Where 1 mole of SO₄²⁻ reacts per mole of Ba²⁺</em>
<em />
To reach the end point in this titration, we need to add the same moles of Ba²⁺ that the moles that are of SO₄²⁻.
Thus, to find molarity of SO₄²⁻ we need to find first the moles of Ba²⁺ added (That will be the same of SO₄²⁻). And as the volume of the initial sample was 100mL we can find molarity (As ratio of moles of SO₄²⁻ per liter of solution).
<em>Moles Ba²⁺:</em>
7.48mL = 7.48x10⁻³L ₓ (0.0250moles / L) = 1.87x10⁻⁴ moles of Ba²⁺ = Moles of SO₄²⁻
<em>Molarity SO₄²⁻:</em>
As there are 1.87x10⁻⁴ moles of SO₄²⁻ in 100mL = 0.1L, molarity is:
1.87x10⁻⁴ moles of SO₄²⁻ / 0.1L =
<h3> 1.87x10⁻³ M SO₄²⁻</h3>
The answer is solution a must have a lower solute concentration than solution b.
That is when water is moving across a membrane from solution a into solution b, then solution a must have a lower solute concentration than solution b.
When solution a have a lower solute concentration than solution b, then water moves across a membrane from solution a into solution b.