15 is the group that phosphorus is found in.
Answer:
62.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2C₈H₁₈ + 25O₂ —> 16CO₂ + 18H₂O
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Finally, we shall determine the number of mole of O₂ needed to react with 5 moles of C₈H₁₈. This can be obtained as shown below:
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Therefore, 5 moles of C₈H₁₈ will react with = (5 × 25) / 2 = 62.5 moles of O₂.
Thus, 62.5 moles of O₂ is needed for the reaction.
Explanation:
(A)role of nittogen fixing bacteria
=Nitrogen-fixing bacteria, microorganisms capable of transforming atmospheric nitrogen into fixed nitrogen (inorganic compounds usable by plants). More than 90 percent of all nitrogen fixation is effected by these organisms, which thus play an important role in the nitrogen cycle.
B)role of nitrifying bacteria
=Nitrifying bacteria convert the most reduced form of soil nitrogen, ammonia, into its most oxidized form, nitrate. In itself, this is important for soil ecosystem function, in controlling losses of soil nitrogen through leaching and denitrification of nitrate.
C)role of denitrifying bacteria
=Denitrifying bacteria converts nitrates back to nitrogen gas.
Answer:
the concentration of the solution is 0.00906 M
Explanation:
Given the data in the question;
we know that from Nernst Equation;
E = E⁰ - ((0.0592/n) logQ)
now, E₀ for concentration cell is 0
n for this redox is 2
concentration of the unknown solution is x
so we substitute
0.045 = 0 - ( 0.0592 / 2)log( x/0.300 ))
0.045 = -0.0296log( x/0.300 )
divide both side by 0.0296
1.52 = -log( x/0.300 )
x/0.300 =
x/0.300 = 0.0301995
we cross multiply
x = 0.300 × 0.0301995
x = 0.00906 M
Therefore, the concentration of the solution is 0.00906 M