Answer:Bounty
Explanation:After being soaked, the Bounty towel held an impressive 43 ounces or 2.69 pounds.
Did this help?
Pentaarsenic decafluoride
Penta=5
Arsenic=As
Deca=10
Fluoride=F
Drop the -ine and add -ide
Bleh bleh bleh bleh bleh bleh bleh bleh and bleh
<u>The troposphere: </u>
H. This layer can have thunderstorms or clear, sunny skies.
A. The biosphere interacts most with this layer.
<u>The stratosphere:</u>
B. It is the second layer from Earth's surface.
G. Winds are strong and steady in this layer.
<u>The mesosphere:</u>
E. It is heated by the ozone layer beneath it.
D. This layer is where most meteor showers occur.
<u>The thermosphere :</u>
F. It contains the ionosphere and exosphere.
C. It contains layers of single, unmixed gas.
<u>Explanation:</u>
Depending on the Earth's temperature the atmosphere can be separated into layers. The troposphere, the stratosphere, the mesosphere and the thermosphere are those layers. The lowest layer is named as Troposphere (0-10 km from the Earth outer surface), it comprises about 75% of the atmosphere's total air and nearly most the water vapor.
Stratosphere (10-30) includes much of the surface ozone. The change in height temperature arises as this ozone absorbs ultraviolet (UV) radiation from the sun. The temperature in Mesosphere (30-50 Km) declines again with height, hitting a minimum of about -90 ° C at the "mesopause." Above this thermosphere (50-400 Km) is settled which is a area where temperatures rise with height once again. The penetration of intense UV and X-ray radiation from the sun induces this temperature rise.
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.