Ecell = E°cell - RT/vF * lnQ
R is the gas constant: 8.3145 J/Kmol
T is the temperature in kelvin: 273.15K = 0°C, 25°C = 298.15K
v is the amount of electrons, which in your example seems to be six (I'm not totally sure)
F is the Faradays constant: 96485 J/Vmol (not sure about the mol)
Q is the concentration of products divided by the concentration of reactants, in which we ignore pure solids and liquids: [Mg2+]³ / [Fe3+]²
Standard conditions is 1 mol, at 298.15K and 1 atm
To find E°cell, you have to look up the reduction potensials of Fe3+ and Mg2+, and solve like this:
E°cell = cathode - anode
Cathode is where the reduction happens, so that would be the element that recieves electrons. Anode is where the oxidation happens, so that would be the element that donates electrons. In your example Fe3+ recieves electrons, and should be considered as cathode in the equation above.
When you have found E°cell, you can just solve with the numbers I gave you.
Answer:
When an electric current is passed through acidified water, it decomposes to give hydrogen and oxygen gas. The hydrogen gas is obtained at the cathode and the oxygen gas is obtained at the anode
Answer:
A.
Explanation:
melting of ice will increase water in oceans due to which water in oceans will increase and salinity will decrease. hence, melting of ice caps near the north pole affects salinity of the ocean
A) Salt, because salt can easily dissolve in water. Oil would not dissolve or evaporate in water (think of an oil spill - does that oil dissappear?). Aluminum foil would definitely not dissolve in water, so it is not soluble.
Are you kidding me is this answer or question you got be kidding