Answer:
option A
associative property of addition
Answer:
y > 6x -100
Step-by-step explanation:
the slope intercept equation of the line is
y=mx+b
m is the slope = (y2-y1) / (x2-x1) so between the y-intercept (0,-100) and the given point (25, 50) we have m= -100-50/0-25 = -150/-25 = 6
y= 6x -100
now we have to figure the inequqlity part so take point (0, 0) that belongs to the solution and substitute in the equation
0 = 6*0 -100
0 = -100 for the equation to be true we have to make it 0 > -100, we also need to make it NOT greater or equal then because the line is doted not solid so the inequality is
y > 6x -100
You would assume that in this figure, the number of colored sections with which are not colored with respect to a " touching " colored section, would be half of the total colored sections. However that is not the case, the sections are not alternating as they still meet at a common point. After all, it notes no two touching sections, not adjacent sections. Their is no equation to calculate this requirement with respect to the total number of sections.
Let's say that we take one triangle as the starting. This triangle will be the start of a chain of other triangles that have no two touching sections, specifically 7 triangles. If a square were to be this starting shape, there are 5 shapes that have no touching sections, 3 being a square, the other two triangles. This is presumably a lower value as a square occupies two times as much space, but it also depends on the positioning. Therefore, the least number of colored sections you can color in the sections meeting the given requirement, is 5 sections for this first figure.
Respectively the solution for this second figure is 5 sections as well.
Answer:
99.66%
Step-by-step explanation:
The answer is 140 feet because 10×14 is 140