Angle ECD is 118°, let me know if you need an explanation or just wanted the answer
<em><u>Step</u></em><em><u>•</u></em><em><u>BY</u></em><em><u>•</u></em><em><u>Step</u></em><em><u> </u></em><em><u>Explanation</u></em><em><u>~</u></em><em><u>|</u></em>
<em><u> </u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
y=1.50
x=0.50
¹
1.50
1.59
______+
3.00
0.50
_____+
<em>3.50</em>
<h2>
<em><u>Answer</u></em><em><u>:</u></em><em><u>♡</u></em><em><u>~</u></em></h2>
<em><u>3.50</u></em>
<em><u>HOPE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>HELPSS</u></em>
Answer:
Sphere Formulas in terms of radius r:
Volume of a sphere: V = (4/3)πr.
The answer choice which is the characteristic of dilations comparing both segments is; A segment in the image is proportionally longer or shorter than its corresponding segment in the pre-image
<h3>Which answer choice compares segment E'F' to segment EF?</h3>
By consider the coordinates of the quadrilaterals EFGH and E'F'G'H' as given in the task content image, it follows that the coordinates are as follows;
- E(0, 1), F(1, 1), G(2, 0), and H(0, 0)
- E'(-1, 2), F'(1, 2), G'(3, 0), and H'(-1, 0)
Upon computation of the length of the segments, it follows that the two segments are in proportions. Hence, the answer choice which is correct is; A segment in the image is proportionally longer or shorter than its corresponding segment in the pre-image.
Remark:
- A segment that passes through the center of dilation in the pre-image continues to pass through the center of dilation in the image.
- A segment in the image has the same length as its corresponding segment in the pre-image.
- A segment that passes through the center of dilation in the pre-image does not pass through the center of dilation in the image.
- A segment in the image is proportionally longer or shorter than its corresponding segment in the pre-image.
Read more on length of segments;
brainly.com/question/24778489
#SPJ1