Answer:
To monitor Pressure increase
Explanation:
the more pressure, the higher the production of the gas, which can be recorded, more pressure meaning higher production. Then vary the temperature.
The order of components in a typical flame atomic absorption spectrometer is hollow cathode lamp--flame--monochromator--detector
<u>Explanation:</u>
- The hollow cathode lamp practices a cathode created of the element of interest with a low internal pressure of inert gas.
- Remove scattered light of other wavelengths from the flame. AAS flame includes aiming at first the fuel than the oxidant and then lighting the flame with the instrument's auto-ignition system. Applying flame Ddtroy any analyte ions and breakdown complexes.
- The process of the monochromator is to divide analytical lines photons moving through the flame
- Photomultiplier tube (PMT) as the detector the PMT determines the intensity of photons of the analytical line exiting the monochromator.
To dissolve one substance, attractions between solute and solvent particles must be formed, steps involved are:
<h3><u>Formation of a solution:</u></h3>
- A physical process, not a chemical one, takes place when a solute and a solvent combine to produce a solution.
- In other words, by applying the right separation techniques, both the solute and the solvent may be recovered in chemically unaltered forms.
- It is claimed that two substances are entirely miscible when they combine to create a single homogenous phase in all ratios. Water and ethanol mix well, much like different gas combinations do.
- When two substances, like oil and water, are fundamentally insoluble in one another, they are said to be immiscible.
- We have already talked about several examples of gaseous solutions, such as the atmosphere of Earth.
- Thus, a system that has two or more compounds homogeneously (in a single phase) dissolved in it is called a solution. It is the homogenous mixture formed when a solute dissolves in a solvent.
To know more about solutions, refer to:
brainly.com/question/1616939
#SPJ4
Answer:

Explanation:
Hello!
In this case, since the enthalpy change for any process is computed by subtracting the enthalpy of the final state and the enthalpy of the initial state, for the given phase change, we subtract the enthalpy of the liquid (final state) and the enthalpy of the solid (initial state) considering this a melting process:

Which makes sense because this process absorbs energy.
Best regards!