<span>The molecule contains one atom of copper and one atom of iodine. They are connected by an ionic bond because the copper takes a positive charge and the iodine has a negative charge before they are bonded. These opposing charges are negated when the two elements come together.</span>
The mixture flow rate in lbm/h = 117.65 lbm/h
<h3>Further explanation</h3>
Given
15.0 wt% methanol
The flow rate of the methyl acetate :100 lbm/h
Required
the mixture flow rate in lbm/h
Solution
mass of methanol(CH₃OH, Mw= 32 kg/kmol) in mixture :

mass of the methyl acetate(C₃H₆O₂,MW=74 kg/kmol,85% wt) in 200 kg :

Flow rate of the methyl acetate in the mixture is to be 100 lbm/h.
1 kg mixture = 0.85 .methyl acetate
So flow rate for mixture :

Answer:
40.4 kJ
Explanation:
Step 1: Given data
- Heat of sublimation of CO₂ (ΔH°sub): 32.3 kJ/mol
Step 2: Calculate the moles corresponding to 55.0 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
n = 55.0 g × 1 mol/44.01 g = 1.25 mol
Step 3: Calculate the heat (Q) required to sublimate 1.25 moles of CO₂
We will use the following expression.
Q = n × ΔH°sub
Q = 1.25 mol × 32.3 kJ/mol = 40.4 kJ