Humid air has higher pressure because of the heaviness of the water
Answer: a) for 150 Angstroms 6.63 *10^-3 eV; b) for 5 Angstroms 6.02 eV
Explanation: To solve this problem we have to use the relationship given by De Broglie as:
λ =p/h where p is the momentum and h the Planck constant
if we consider the energy given by acceleration tube for the electrons given by: E: e ΔV so is equal to kinetic energy of electrons p^2/2m
Finally we have:
eΔV=p^2/2m= h^2/(2*m*λ^2)
replacing we obtained the above values.
Answer:
t= 137.5 s
Explanation:
So if we are wanting to figure out how long it takes runner B to catch runner A. we must first set the slope of each runner equal to one another
<u>Slopes:</u>
Runner A: y = 7.50x + 55
Runner B: y = 7.90 x
sooooo
7.50 x + 55 = 7.90 x
- 7.50 x - 7.50 x
55 = .40 x
55/.40 = .40 x / .40
x = 137.5 s
t= 137.5 s
7.50 * 137.5 + 55 =1086.25 m
7.90 * 137.5 = 1086.25 m
Answer:
It decreases.
Explanation:
between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases
Answer: B
Explanation:
It's not the time it took to heat the substance, so that rules out A and C.
This means that we only have to choose between
B. the area of contact
D. the area of the substances
(since everything else in each of those answers are the same)
Area of contact matters more (e.g. an object with greater surface area is exposed to the air more, will lose/gain heat quicker than an object with less surface area).