The kinetic energy is
.
Explanation:
The kinetic energy of an object is given by

where
K is the kinetic energy of the object
m is the mass of the object
v is the speed of the object
For the comet in this problem, we have:
is its mass
is the speed
First, we convert the speed from km/h to m/s:

Therefore, the kinetic energy of the comet is

Learn more about kinetic energy here:
brainly.com/question/6536722
#LearnwithBrainly
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
To develop this problem it is necessary to apply the concepts related to Gravitational Potential Energy.
Gravitational potential energy can be defined as

As M=m, then

Where,
m = Mass
G =Gravitational Universal Constant
R = Distance /Radius
PART A) As half its initial value is u'=2u, then



Therefore replacing we have that,

Re-arrange to find v,



Therefore the velocity when the separation has decreased to one-half its initial value is 816m/s
PART B) With a final separation distance of 2r, we have that

Therefore




Therefore the velocity when they are about to collide is 
Pitch is related to frequency
Explanation:
An perfect mass less spring, attached at one end and with a free mass attached at the other end, will have a distinct frequency of oscillation depending on its constant spring and mass. On the other hand, a spring with mass along its length will not have a characteristic frequency of oscillation.
Alternatively, based on its spring constant and mass per length, it will now have a wave Speed. It would be possible to use all wavelengths and frequencies, as long as the component fλ= S, where S is the spring wave size. If that sounds like longitudinal waves, like solid sound waves.