Answer:
There are four main ways of doing that :-
- Velocity
- Acceleration
- Momentum
- Kinetic energy
Hope it helps!
The working equation for this is: E = F/Q, where E is the strength of electric field, F is the force and Q is the charge. The force is equal to:
F = mg = (0.13/1000 kg)(9.81 m/s²) = 1.2753×10⁻³ N
The charge of he excess electrons is equal to:
Q = (-1.6021766208×10⁻¹⁹ C/electron)(1×10¹⁰ electrons)
Q = -1.6021766208×10⁻⁹ C
E = 1.2753×10⁻³ N/-1.6021766208×10⁻⁹ C
E = -795,979.66 N/C
The value of the second charge is 1.2 nC.
<h3>
Electric potential</h3>
The work done in moving the charge from infinity to the given position is calculated as follows;
W = Eq₂
E = W/q₂
<h3>Magnitude of second charge</h3>
The magnitude of the second charge is determined by applying Coulomb's law.

Thus, the value of the second charge is 1.2 nC.
Learn more about electric potential here: brainly.com/question/14306881
Answer: D. 273
Explanation: Celsius temperatures can be negative while kelvin goes down to absolute zero and doesn’t go any lower, thus no negative numbers