1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
9

An archer shot a 0.07 kg arrow at a target. The arrow accelerated at 4,000 m/s2 to reach a speed of 50.0 m/s as it left the bow.

During this acceleration, what was the net force on the arrow?
A) 280 N
B) .0000175 N
C) 57,142 N
D) 3.5 N
Physics
2 answers:
denpristay [2]3 years ago
3 0

Answer:

A. 280

Explanation:

saw5 [17]3 years ago
3 0
The answer is A ) 280 N
You might be interested in
(11%) Problem 5: A submarine is stranded on the bottom of the ocean with its hatch 25 m below the surface. In this problem, assu
V125BC [204]

Answer:

F = 1.24*10^4 N

Explanation:

Given

Depth of the ship, h = 25 m

Density of water, ρ = 1.03*10^3 kg/m³

Diameter of the hatch, d = 0.25 m

Pressure of air, P(air) = 1 atm

Pressure of water =

P(w) = ρgh

P(w) = 1.03*10^3 * 9.8 * 25

P(w) = 2.52*10^5 N/m²

P(net) = P(w) + P(air) - P(air)

P(net) = P(w)

P(net) = 2.52*10^5 N/m²

Remember,

Pressure = Force / Area, so

Force = Area * Pressure

Area = πr² = πd²/4

Area = 3.142 * 0.25²/4

Area = 3.142 * 0.015625

Area = 0.0491 m²

Force = 0.0491 * 2.52*10^5

F = 12373 N

F = 1.24*10^4 N

5 0
3 years ago
Read 2 more answers
An 20-cm-long Bicycle Crank Arm. With A Pedal At One End. Is Attached To A 25-cm-diameter Sprocket, The Toothed Disk Around Whic
malfutka [58]

To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.

The angular velocity can be described as

\omega_f = \omega_0 + \alpha t

Where,

\omega_f =Final Angular Velocity

\omega_0 =Initial Angular velocity

\alpha = Angular acceleration

t = time

The relation between the tangential acceleration is given as,

a = \alpha r

where,

r = radius.

PART A ) Using our values and replacing at the previous equation we have that

\omega_f = (94rpm)(\frac{2\pi rad}{60s})= 9.8436rad/s

\omega_0 = 63rpm(\frac{2\pi rad}{60s})= 6.5973rad/s

t = 11s

Replacing the previous equation with our values we have,

\omega_f = \omega_0 + \alpha t

9.8436 = 6.5973 + \alpha (11)

\alpha = \frac{9.8436- 6.5973}{11}

\alpha = 0.295rad/s^2

The tangential velocity then would be,

a = \alpha r

a = (0.295)(0.2)

a = 0.059m/s^2

Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

\omega_f^2=\omega_0^2+2\alpha\theta

Replacing with our values and re-arrange to find \theta,

\theta = \frac{\omega_f^2-\omega_0^2}{2\alpha}

\theta = \frac{9.8436^2-6.5973^2}{2*0.295}

\theta = 90.461rad

That is equal in revolution to

\theta = 90.461rad(\frac{1rev}{2\pi rad}) = 14.397rev

The linear displacement of the system is,

x = \theta*(2\pi*r)

x = 14.397*(2\pi*\frac{0.25}{2})

x = 11.3m

5 0
3 years ago
What is the speed of a bobsled whose distance-time graph indicates that it traveled 119m in 27s
BaLLatris [955]
4ms I'm just guessing by the way

3 0
3 years ago
Please help i'm going to throw up from stress
Eddi Din [679]

Answer:

Explanation:

First of all, I used the specific heat of water as 4182 J/(kgC) and the specific heat of ethyl alcohol (EtOH) as 2440 J/(kgC); that means that we need the masses in kg, not g.

120.g = .1200 kg of ethyl alcohol. Now for the formula:

t_f=\frac{(m_{H2O}*spheat_{H2O}*temp_{H2O})+(m_{EtOH}*spheat_{EtOH}*temp_{EtOH})}{(m_{H2O}*spheat_{H2O})+(m_{EtOH}*spheat_{EtOH})} where spheat is specific heat.

Filling that horrifying-looking formula in with some values:

16.0=\frac{(x*4182*20.0)+(.1200*2440*10.0)}{(x*4182)+(.1200*2440)} and

16.0=\frac{83640x+2928}{4182x+292.8} and

16(4182x + 292.8) = 83640x + 2928 and

66912x + 4684.8 = 83640x + 2928 and

1756.8 = 16728x so

x = .105 kg and the amount of water added is 105 g

4 0
3 years ago
During a thunderstorm a tornado lift a car to a height of 300 m above the ground increasing and strength the tornado flings the
sasho [114]

Answer:

Explanation:

To calculate the time it took the car to hit the ground, we use the formula

speed = distance/time

80 m/s = 300 m/time

time = 300/80

time = 3.75 secs

It must have taken the car 3.75 seconds to hit the ground

To determine the horizontal distance of the car before hitting the ground, the same formula will also be used but with the time obtained above (since that was the time it took before hitting the ground)

speed = distance/time

80 = distance/3.75

distance = 3.75 x 80

distance = 300 meters

4 0
3 years ago
Other questions:
  • A wave is approaching a barrier that has a small hole at the center. Which describes the change in the wave as it encounters the
    15·2 answers
  • As a new electrical technician, you are designing a large solenoid to produce a uniform 0.170 T magnetic field near its center.
    15·1 answer
  • A car traveling at 38 m/s starts to decelerate steadily. It comes to a complete stop in 7 seconds. What is its acceleration?
    6·1 answer
  • Why are electromagnets, rather than permanent magnets, used in MRLs?
    5·1 answer
  • The μ-receptor (mu) a. plays a role in analgesia and the rewarding effects of morphine. b. overlaps with the κ-receptor in its d
    11·1 answer
  • Can someone answer these two questions? thanks
    14·1 answer
  • What kind of substance can you pour from one container into another without
    5·1 answer
  • The television station sends​
    8·1 answer
  • Why is it that when riding in a car, you don't feel like you're moving?
    9·1 answer
  • is the following statement true or false? the light wave from a bulb is an example of a periodic wave.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!