Answer:
60m
Explanation:
According to one of the equation of motions, v² = u²+2as where;
S is the distance
u is the initial velocity
v is the final velocity
a is the acceleration
Since the arrow is shot upwards, the body will experience a negative acceleration due to gravity i.e a = -g
Therefore our equation will become;
v² = u² - 2gS
Given u = 40m/s, g = 10m/s², S = 75m
Substituting to get the final velocity of the arrow we will have;
v² = 40²-2(10)(75)
v² = 1600 - 1500
v² = 100
v = √100
v = 10m/s
Total distance traveled is speed of the object × time taken
Total distance traveled = 10 × 6
= 60m
The arrow has therefore traveled 60m after 6seconds
Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
Answer:
The angular acceleration is 
Explanation:
From the question we are told that
The moment of inertia is 
The net torque is 
Generally the net torque is mathematically represented as

Where
is the angular acceleration so

substituting values

