A. High intermolecular forces of attraction. If there are high intermolecular forces, the molecules will need large energies to escape into the liquid. The substance will nave a high melting point.
The other options are <em>incorrect </em>because they are <em>weak force</em>s. They would cause <em>low melting points</em>.
Answer:
The percentage deviation is
%
Explanation:
From the question we are told that
The concentration is of the solution is 
The true absorbance A = 0.7526
The percentage of transmittance due to stray light
% 
Generally Absorbance is mathematically represented as

Where T is the percentage of true transmittance
Substituting value



%
The Apparent absorbance is mathematically represented

Substituting values


= 0.7385
The percentage by which apparent absorbance deviates from known absorbance is mathematically evaluated as


%
Since Absorbance varies directly with concentration the percentage deviation of the apparent concentration from know concentration is
%
From the given pH, we calculate the concentration of H+:
[H+] = 10^-pH = 10^-5.5
We then use the volume to solve for the number of moles of H+:
moles H+ = 10^-5.5M * 4.3x10^9 L = 13598 moles
From the balanced equation of the neutralization of hydrogen ion by limestone written as
CaCO3(s) + 2H+(aq) → Ca2+(aq) + H2CO3(aq)
we use the mole ratio of limestone CaCO3 and H+ from their coefficients, which is 1 mole of CaCO3 is to react with 2 moles of H+, to compute for the mass of the limestone:
mass CaCO3 = 13598mol H+(1mol CaCO3/2mol H+)
(100.0869g CaCO3/1mol CaCO3)(1kg/1000g)
= 680 kg
February or march probably
Answer:
MgO + 2HBr → MgBr2 + H2O
Explanation: