Answer:
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape.
Answer:
= 9,593.1 Joules
Explanation:
Heat absorbed by water is equivalent to heat released by copper.
Heat absorbed is given by;
Q = mcΔT
where m is the mass, c is the specific capacity and ΔT is the change in temperature.
Therefore;
Since dnsity of water is 1 g/mL, and specific heat capacity is 4.18 J/g°C while the change in temperature is (75-24) = 51°C.
Heat absorbed by water = 45 g × 4.18 J/g°C × 51
= 9,593.1 Joules
Therefore, the heat released by copper is 9,593.1 Joules
<h3>
Answer:</h3>
89.88° C
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of gold cylinder as 75 g
- specific heat of gold is 0.129 J/g°C
- Initial temperature of gold cylinder is 65°C
- Mass of water is 500 g
- Initial temperature of water is 90 °C
We are required to calculate the final temperature;
- We know that Quantity of heat is given by the product of mass, specific heat capacity and change in temperature.
<h3>Step 1: Calculate the quantity of heat absorbed by the Gold cylinder</h3>
Assuming the final temperature is X° C
Then; ΔT = (X-65)°C
Therefore;
Q = 75 g × 0.129 J/g°C × (X-65)°C
= 9.675X - 628.875 Joules
<h3>Step 2: Calculate the quantity of heat released by water</h3>
Taking the final temperature as X° C
Change in temperature, ΔT = (90 - X)° C
Specific heat capacity of water is 4.184 J/g°C
Therefore;
Q = 500 g × 4.184 J/g°C × (90 - X)° C
= 188,280 -2092X joules
<h3>Step 3: Calculate the final temperature, X°C</h3>
we know that the heat gained by gold cylinder is equal to the heat released by water.
9.675X - 628.875 Joules = 188,280 -2092X joules
2101.675 X = 188908.875
X = 89.88° C
Thus, the final temperature is 89.88° C