The distance of the flag pole from point Y is 0.8 km and it is placed at an bearing of N40°E
<h3>What is an equation?</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
Sine rule shows the relationship between the sides and angles of a triangle.
The triangle formed has angles A = 10°, B = 50°, C = 120°, c = 4 km, a = distance from point y.
Hence:
a / sinA = c / sinC
a / sin(10) = 4 / sin(120)
a = 0.8 km
The distance of the flag pole from point Y is 0.8 km and it is placed at an bearing of N40°E
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:

Step-by-step explanation:
Let's sketch graphs of functions f(x) and g(x) on one coordinate system (attachment).
Let's calculate the common points:
![x^2=\sqrt{x}\qquad\text{square of both sides}\\\\(x^2)^2=\left(\sqrt{x}\right)^2\\\\x^4=x\qquad\text{subtract}\ x\ \text{from both sides}\\\\x^4-x=0\qquad\text{distribute}\\\\x(x^3-1)=0\iff x=0\ \vee\ x^3-1=0\\\\x^3-1=0\qquad\text{add 1 to both sides}\\\\x^3=1\to x=\sqrt[3]1\to x=1](https://tex.z-dn.net/?f=x%5E2%3D%5Csqrt%7Bx%7D%5Cqquad%5Ctext%7Bsquare%20of%20both%20sides%7D%5C%5C%5C%5C%28x%5E2%29%5E2%3D%5Cleft%28%5Csqrt%7Bx%7D%5Cright%29%5E2%5C%5C%5C%5Cx%5E4%3Dx%5Cqquad%5Ctext%7Bsubtract%7D%5C%20x%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E4-x%3D0%5Cqquad%5Ctext%7Bdistribute%7D%5C%5C%5C%5Cx%28x%5E3-1%29%3D0%5Ciff%20x%3D0%5C%20%5Cvee%5C%20x%5E3-1%3D0%5C%5C%5C%5Cx%5E3-1%3D0%5Cqquad%5Ctext%7Badd%201%20to%20both%20sides%7D%5C%5C%5C%5Cx%5E3%3D1%5Cto%20x%3D%5Csqrt%5B3%5D1%5Cto%20x%3D1)
The area to be calculated is the area in the interval [0, 1] bounded by the graph g(x) and the axis x minus the area bounded by the graph f(x) and the axis x.
We have integrals:
![\int\limits_{0}^1(\sqrt{x})dx-\int\limits_{0}^1(x^2)dx=(*)\\\\\int(\sqrt{x})dx=\int\left(x^\frac{1}{2}\right)dx=\dfrac{2}{3}x^\frac{3}{2}=\dfrac{2x\sqrt{x}}{3}\\\\\int(x^2)dx=\dfrac{1}{3}x^3\\\\(*)=\left(\dfrac{2x\sqrt{x}}{2}\right]^1_0-\left(\dfrac{1}{3}x^3\right]^1_0=\dfrac{2(1)\sqrt{1}}{2}-\dfrac{2(0)\sqrt{0}}{2}-\left(\dfrac{1}{3}(1)^3-\dfrac{1}{3}(0)^3\right)\\\\=\dfrac{2(1)(1)}{2}-\dfrac{2(0)(0)}{2}-\dfrac{1}{3}(1)}+\dfrac{1}{3}(0)=2-0-\dfrac{1}{3}+0=1\dfrac{1}{3}](https://tex.z-dn.net/?f=%5Cint%5Climits_%7B0%7D%5E1%28%5Csqrt%7Bx%7D%29dx-%5Cint%5Climits_%7B0%7D%5E1%28x%5E2%29dx%3D%28%2A%29%5C%5C%5C%5C%5Cint%28%5Csqrt%7Bx%7D%29dx%3D%5Cint%5Cleft%28x%5E%5Cfrac%7B1%7D%7B2%7D%5Cright%29dx%3D%5Cdfrac%7B2%7D%7B3%7Dx%5E%5Cfrac%7B3%7D%7B2%7D%3D%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B3%7D%5C%5C%5C%5C%5Cint%28x%5E2%29dx%3D%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5C%5C%5C%5C%28%2A%29%3D%5Cleft%28%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B2%7D%5Cright%5D%5E1_0-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5Cright%5D%5E1_0%3D%5Cdfrac%7B2%281%29%5Csqrt%7B1%7D%7D%7B2%7D-%5Cdfrac%7B2%280%29%5Csqrt%7B0%7D%7D%7B2%7D-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7D%281%29%5E3-%5Cdfrac%7B1%7D%7B3%7D%280%29%5E3%5Cright%29%5C%5C%5C%5C%3D%5Cdfrac%7B2%281%29%281%29%7D%7B2%7D-%5Cdfrac%7B2%280%29%280%29%7D%7B2%7D-%5Cdfrac%7B1%7D%7B3%7D%281%29%7D%2B%5Cdfrac%7B1%7D%7B3%7D%280%29%3D2-0-%5Cdfrac%7B1%7D%7B3%7D%2B0%3D1%5Cdfrac%7B1%7D%7B3%7D)
Answer:
the answer is 112
Step-by-step explanation:
7² = 49.
4² = 16.
49+3(16+3+2) = 49+3(21) = 49+63 = 112
Answer:
a= 22.5
b= 37.5
Step-by-step explanation:
<u>In</u><u> </u><u>△</u><u>BCD</u><u>:</u>
Applying Pythagoras' Theorem,
a² +30²= b²
a² +900= b² -----(1)
<u>In</u><u> </u><u>△</u><u>ABC</u><u>:</u>
Applying Pythagoras' Theorem,
b² +50²= (40 +a)² -----(2)
Substitute (1) into (2):
a² +900 +50²= 40² +2(40)(a) +a²<em> </em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>expand</em><em> </em><em>bracket</em><em>)</em>
a² +900 +2500= 1600 +80a +a²
a² +3400= a² +80a +1600 <em>(</em><em>simplify</em><em>)</em>
a² +3400 -a² -80a -1600= 0 <em>(</em><em>bring</em><em> </em><em>everything</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>)</em>
-80a +1800= 0
80a= 1800 <em>(</em><em>+</em><em>8</em><em>0</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
a= 1800 ÷80
a= 22.5
Subst. a= 22.5 into (1):
22.5² +900= b²
b²= 506.25 +900
b²= 1406.25
b= √1406.25 <em>(</em><em>square</em><em> </em><em>root</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
b= 37.5 <em>(</em><em>reject</em><em> </em><em>negative</em><em> </em><em>value</em><em> </em><em>since</em><em> </em><em>b</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>length</em><em>)</em>
☆(a +b)²= a² +2ab +b²