<h2><u><em>
Answer:</em></u></h2>
<u><em>1. FALSE</em></u>
<u><em>2. TRUE</em></u>
<u><em>3. FALSE</em></u>
<u><em>4. TRUE</em></u>
<h2>
Step-by-step explanation:</h2>
<em>6≤-6 = False</em>
<em>-3<3 = True</em>
<em>2.9>2.9 = False</em>
<em>4.5≥4.5 = True</em>
<em>I Hope That This Helps You GOOD LUCK</em>
This is really simple. She had 4/6 ft plus 5/6 ft ribbon. This is equal to 1.5 ribbon.
Let c > 0. Then split the integral at t = c to write

By the FTC, the derivative is
![\displaystyle \frac{df}{dx} = \left(\frac1x + \sin\left(\frac1x\right)\right) \frac{d}{dx}\left[\frac1x\right] - (\ln(x) + \sin(\ln(x))) \frac{d}{dx}\left[\ln(x)\right] \\\\ = -\frac1{x^2} \left(\frac1x + \sin\left(\frac1x\right)\right) - \frac1x (\ln(x) + \sin(\ln(x))) \\\\ = -\frac1{x^3} - \frac{\sin\left(\frac1x\right)}{x^2} - \frac{\ln(x)}x - \frac{\sin(\ln(x))}x \\\\ = -\frac{1 + x\sin\left(\frac1x\right) + x^2\ln(x) + x^2 \sin(\ln(x))}{x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdf%7D%7Bdx%7D%20%3D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cfrac1x%5Cright%5D%20-%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cln%28x%29%5Cright%5D%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E2%7D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20-%20%5Cfrac1x%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E3%7D%20-%20%5Cfrac%7B%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%7D%7Bx%5E2%7D%20-%20%5Cfrac%7B%5Cln%28x%29%7Dx%20-%20%5Cfrac%7B%5Csin%28%5Cln%28x%29%29%7Dx%20%5C%5C%5C%5C%20%3D%20-%5Cfrac%7B1%20%2B%20x%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%20%2B%20x%5E2%5Cln%28x%29%20%2B%20x%5E2%20%5Csin%28%5Cln%28x%29%29%7D%7Bx%5E3%7D)
Answer:


![V(X) = E(X^2)-[E(X)]^2=349.2-(18.6)^2=3.24](https://tex.z-dn.net/?f=V%28X%29%20%3D%20E%28X%5E2%29-%5BE%28X%29%5D%5E2%3D349.2-%2818.6%29%5E2%3D3.24)
The expected price paid by the next customer to buy a freezer is $466
Step-by-step explanation:
From the information given we know the probability mass function (pmf) of random variable X.

<em>Point a:</em>
- The Expected value or the mean value of X with set of possible values D, denoted by <em>E(X)</em> or <em>μ </em>is

Therefore

- If the random variable X has a set of possible values D and a probability mass function, then the expected value of any function h(X), denoted by <em>E[h(X)]</em> is computed by
![E[h(X)] = $\sum_{D} h(x)\cdot p(x)](https://tex.z-dn.net/?f=E%5Bh%28X%29%5D%20%3D%20%24%5Csum_%7BD%7D%20h%28x%29%5Ccdot%20p%28x%29)
So
and
![E[h(X)] = $\sum_{D} h(x)\cdot p(x)\\E[X^2]=$\sum_{D}x^2\cdot p(x)\\ E(X^2)=16^2\cdot 0.3+18^2\cdot 0.1+20^2\cdot 0.6\\E(X^2)=349.2](https://tex.z-dn.net/?f=E%5Bh%28X%29%5D%20%3D%20%24%5Csum_%7BD%7D%20h%28x%29%5Ccdot%20p%28x%29%5C%5CE%5BX%5E2%5D%3D%24%5Csum_%7BD%7Dx%5E2%5Ccdot%20p%28x%29%5C%5C%20E%28X%5E2%29%3D16%5E2%5Ccdot%200.3%2B18%5E2%5Ccdot%200.1%2B20%5E2%5Ccdot%200.6%5C%5CE%28X%5E2%29%3D349.2)
- The variance of X, denoted by V(X), is
![V(X) = $\sum_{D}E[(X-\mu)^2]=E(X^2)-[E(X)]^2](https://tex.z-dn.net/?f=V%28X%29%20%3D%20%24%5Csum_%7BD%7DE%5B%28X-%5Cmu%29%5E2%5D%3DE%28X%5E2%29-%5BE%28X%29%5D%5E2)
Therefore
![V(X) = E(X^2)-[E(X)]^2\\V(X)=349.2-(18.6)^2\\V(X)=3.24](https://tex.z-dn.net/?f=V%28X%29%20%3D%20E%28X%5E2%29-%5BE%28X%29%5D%5E2%5C%5CV%28X%29%3D349.2-%2818.6%29%5E2%5C%5CV%28X%29%3D3.24)
<em>Point b:</em>
We know that the price of a freezer having capacity X is 60X − 650, to find the expected price paid by the next customer to buy a freezer you need to:
From the rules of expected value this proposition is true:
We have a = 60, b = -650, and <em>E(X)</em> = 18.6. Therefore
The expected price paid by the next customer is

Answer:
5.D1.3 select from among a variety of graphs, including stacked-bar graphs, the type of graph best suited to represent various sets of data; display
Step-by-step explanation: