To calculate this,
We know that energy is 1 photon
E = hc/wavelenth
wavelength of 10.0 m
Solution:
h = 6.626 x 10^-34 Jsec
C = 2.9979 x 10^8 m/sec
E = 6.626 10^-34 * 2.9979 10^8 / 10 = 1.9864 10^-26J
Then, the number of photons is computed by:
n = 1000 / 1.9864 10^-26 = 5.04 10^28 photons
Answer:
6.1×10^4Pa or 61KPa
Explanation:
The Clausius-Clapeyron equation is used to estimate the vapour pressure at different temperature, once the enthalpy of vaporization and the vapor pressure at another temperature is given in the question. The detailed solution is shown in the image attached. The temperatures were converted to kelvin and the energy value was converted from kilojoule to joule since the value of the gas constant was given in unit of joule per mole per kelvin. The fact that lnx=2.303logx was also applied in the solution.
Heat is the most important thing in the melting point of rock. Rock, melts when put into<span> 572 degrees Fahrenheit and 1,292 degrees Fahrenheit. Different types of rock may melt at different temperature because in the difference of their material. HOPED THIS HELPS YOU :)</span>
Answer:
a weak bond between two molecules resulting from an electrostatic attraction between a proton in one molecule and an electronegative atom in the other.
Explanation:
For example, in water molecules (H2O), hydrogen is covalently bonded to the more electronegative oxygen atom. Therefore, hydrogen bonding arises in water molecules due to the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another H2O molecule.
Answer:
2.35 M
Explanation:
Molarity is mol/L of solution. We have to convert the g to mol and the mL to L. G to mol uses the molar mass of the compound. The molar mass of NaNO₃ is 85.00g/mol.

Then you have to convert mL to L.

Now divide the mol by the L.

Round to the smallest number of significant figures = 2.35M