Answer:
V₂ = 22.84 L
Explanation:
Given data:
Initial volume = 20.0 L
Initial pressure = 1.50 atm
Initial temperature = 23 °C (23 +273 = 296 K)
Final temperature = 271°C (271+273 = 544 K)
Final pressure = 3.50 atm
Final volume = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1.50 atm × 29.0L ×544 K / 296 K × 3.50 atm
V₂ = 23664 atm .L. K / 1036 atm.K
V₂ = 22.84 L
In the past a scientist named dalton produced an atomic theory. There were certain problems regarding his views. So, later on scientists like chadwick, rutherford and thompson added some fresh light for the real identification of the atom.
dalton said the atom was the smallest unit and it CANNOT BE DIVIDED ANY FURTHER.
NOTE... this was renected with the discovery of the proton, neutron and electron as the sub atomic particles.
Answer:
It is an example of coupling an exogenic reaction to an endogenic reaction.
Explanation:
The endergonic reaction is typically being pushed by coupling it to strongly exergonic reaction. This is in most cases via shared intermediates. Most chemical reactions are endergonic in nature. In other word, the are not spontaneous (i.e ΔG>0). Energy must also be applied externally to initiate the reactions. The reactions can also be coupled to exergonic reactions (with ΔG<0) to initiate them through a process known as share intermediate. Because Gibbs Energy can be summed up (i.e is a state function), the combined ΔG of the coupled reaction will be thermodynamically favorable. The decomposition of calcium carbonate is a typical example.